Buch, Englisch, 640 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1115 g
Reihe: Oxford Lecture Series in Mathematics and Its Applications
Buch, Englisch, 640 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 1115 g
Reihe: Oxford Lecture Series in Mathematics and Its Applications
ISBN: 978-0-19-966657-7
Verlag: Oxford University Press (UK)
The self-avoiding walk is a classical model in statistical mechanics, probability theory and mathematical physics. It is also a simple model of polymer entropy which is useful in modelling phase behaviour in polymers.
This monograph provides an authoritative examination of interacting self-avoiding walks, presenting aspects of the thermodynamic limit, phase behaviour, scaling and critical exponents for lattice polygons, lattice animals and surfaces. It also includes a comprehensive account of constructive methods in models of adsorbing, collapsing, and pulled walks, animals and networks, and for models of walks in confined geometries. Additional topics include scaling, knotting in lattice polygons,
generating function methods for directed models of walks and polygons, and an introduction to the Edwards model.
This essential second edition includes recent breakthroughs in the field, as well as maintaining the older but still relevant topics. New chapters include an expanded presentation of directed models, an exploration of methods and results for the hexagonal lattice, and a chapter devoted to the Monte Carlo methods.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Chemie Physikalische Chemie Quantenchemie, Theoretische Chemie
- Mathematik | Informatik Mathematik Topologie
- Mathematik | Informatik Mathematik Geometrie
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik




