E-Book, Englisch, 267 Seiten
Javey / Kong / Javey. Carbon Nanotube Electronics
1. Auflage 2009
ISBN: 978-0-387-69285-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 267 Seiten
Reihe: Integrated Circuits and Systems
ISBN: 978-0-387-69285-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides a complete overview of the field of carbon nanotube electronics. It covers materials and physical properties, synthesis and fabrication processes, devices and circuits, modeling, and finally novel applications of nanotube-based electronics. The book introduces fundamental device physics and circuit concepts of 1-D electronics. At the same time it provides specific examples of the state-of-the-art nanotube devices.
Autoren/Hrsg.
Weitere Infos & Material
1;Carbon Nanotube Electronics;2
1.1;Preface;6
1.2;Contents;8
1.3;Contributors;10
1.4;Ch-1 Band Structure and Electron Transport Physics of One-Dimensional SWNTs;12
1.4.1;1.1 Introduction to the Band Structures of SWNTs;12
1.4.1.1;1.1.1 Electronic Band Structure of Graphene;12
1.4.1.2;1.1.2 Band Structure of SWNT from Graphene;17
1.4.1.3;1.1.3 Deviation from Simple Zone-Folding Tight-Binding Picture;20
1.4.1.4;1.1.4 Density of States in SWNTs;20
1.4.1.5;1.1.5 Experimental Verifications of the Band Structure of SWNTs;21
1.4.2;1.2 Quantum Transport in SWNTs;26
1.4.2.1;1.2.1 Quantum Conductance in 1D Systems;26
1.4.2.2;1.2.2 Quantum Transport in SWNTs;27
1.4.3;1.3 Modifications to the Band Structure;32
1.4.3.1;1.3.1 External Fields;32
1.4.3.2;1.3.2 Mechanical Deformation;36
1.4.4;1.4 Electron Transport Properties of SWNTs;40
1.4.4.1;1.4.1 Scatterings in SWNTs;40
1.4.4.2;1.4.2 Carrier Mobility in SWNTs;45
1.4.5;1.5 Summary;47
1.5;Ch-2 Direct Synthesis and Integration of SWNT Devices;54
1.5.1;2.1 Introduction;54
1.5.2;2.2 CVD Synthesis;55
1.5.2.1;2.2.1 The Method;55
1.5.2.2;2.2.2 Direct Incorporation with the Device Fabrication Process;56
1.5.2.3;2.2.3 SWNT Synthesis on Metal Electrodes;57
1.5.2.4;2.2.4 Lowering the Synthesis Temperature;58
1.5.3;2.3 Controlling the SWNT Growth;59
1.5.3.1;2.3.1 Location;59
1.5.3.2;2.3.2 Orientation;61
1.5.3.3;2.3.3 Chirality;63
1.5.3.3.1;2.3.3.1 Narrowing the Diameter Distributions;63
1.5.3.3.2;2.3.3.2 Chirality Distribution Analysis for Different CVD Processes;64
1.5.3.3.3;2.3.3.3 Selective Removal of the Metallic Nanotubes in FET Devices;66
1.5.4;2.4 Integration;68
1.5.5;2.5 Summary;68
1.6;Ch-3 Carbon Nanotube Field-Effect Transistors;73
1.6.1;3.1 Introduction;73
1.6.2;3.2 Schottky Barrier Heights of Metal S/D Contacts;74
1.6.3;3.3 High- Gate Dielectric Integration;80
1.6.4;3.4 Quantum Capacitance;82
1.6.5;3.5 Chemical Doping;83
1.6.6;3.6 Hysteresis and Device Passivation;84
1.6.7;3.7 Near Ideal, Metal-Contacted MOSFETs;86
1.6.8;3.8 SWNT MOSFETs;89
1.6.9;3.9 SWNT BTBT-FETs;91
1.6.10;3.10 Conclusion;92
1.7;Ch-4 Measuring the AC Response of SWNT-FETs;97
1.7.1;4.1 Introduction;97
1.7.2;4.2 Assessing the AC Response of Top-Gated SWNT-FETs;99
1.7.2.1;4.2.1 Power Measurement Using a Spectrum Analyzer;99
1.7.2.2;4.2.2 Homodyne Detection Using SWNT-FETs;100
1.7.2.3;4.2.3 RF Characterization Using a Two-Tone Measurement;101
1.7.3;4.3 AC Gain from a SWNT-FET Common Source Amplifier;103
1.7.3.1;4.3.1 Measurement Approach;103
1.7.3.2;4.3.2 Fabrication;104
1.7.3.3;4.3.3 DC Characterization;105
1.7.3.4;4.3.4 AC Characterization;106
1.7.3.5;4.3.5 Modeling;109
1.7.4;4.4 Conclusions;113
1.8;Ch-5 Device Simulation of SWNT-FETs;117
1.8.1;5.1 Introduction;117
1.8.2;5.2 SWNT-FET Simulation Using NEGF Approach;117
1.8.2.1;5.2.1 The NEGF Formalism;118
1.8.2.2;5.2.2 SWNT-FET Simulation in a Real Space Basis Set;119
1.8.2.3;5.2.3 SWNT-FET Simulation in a Mode Space Basis Set;120
1.8.2.4;5.2.4 Treatment of Metal--SWNT Contacts;121
1.8.3;5.3 Device Characteristics at the Ballistic Limit;121
1.8.4;5.4 Role of Phonon Scattering;125
1.8.5;5.5 High-Frequency Performance Limits;129
1.8.6;5.6 Optoelectronic Phenomena;133
1.8.7;5.7 Summary;136
1.9;Ch-6 Carbon Nanotube Device Modeling and Circuit Simulation;142
1.9.1;6.1 Introduction;142
1.9.2;6.2 Schottky Barrier SWNT-FET Modeling;142
1.9.2.1;6.2.1 The Ballistic Model;143
1.9.2.2;6.2.2 Modeling the Schottky Barriers;145
1.9.2.3;6.2.3 Schottky Barrier Device Characteristics;149
1.9.2.4;6.2.4 Mixed-Mode Simulations;150
1.9.3;6.3 Compact Model for Circuit Simulation;151
1.9.3.1;6.3.1 Overview of Carbon Nanotube Transistor Compact Model;152
1.9.3.2;6.3.2 Model of the Intrinsic SWNT Channel Region (SWNT-FET_L1);154
1.9.3.3;6.3.3 The Full SWNT-FET Model;158
1.9.3.4;6.3.4 Validation of the SWNT Compact Model;163
1.9.3.5;6.3.5 Applications of the SWNT-FET Compact Model;166
1.9.4;6.4 Summary;169
1.10;Ch-7 Performance Modeling for Carbon Nanotube Interconnects;172
1.10.1;7.1 Introduction;172
1.10.2;7.2 Circuit Models for SWNTs;173
1.10.2.1;7.2.1 Kinetic Inductance;173
1.10.2.2;7.2.2 Capacitance;175
1.10.2.3;7.2.3 Resistance;176
1.10.2.4;7.2.4 Equivalent Circuit;177
1.10.3;7.3 Circuit Models for SWNTBundles;180
1.10.3.1;7.3.1 Conductivity;180
1.10.3.2;7.3.2 Capacitance;181
1.10.3.3;7.3.3 Inductance;183
1.10.4;7.4 Circuit Models for MWNTs;184
1.10.4.1;7.4.1 Number of Conduction Channels per Shell;185
1.10.4.2;7.4.2 Total Conductance;186
1.10.4.3;7.4.3 Inductance and Capacitance;189
1.10.5;7.5 Carbon Nanotube Interconnects;189
1.10.5.1;7.5.1 Local Interconnects;189
1.10.5.2;7.5.2 Global Interconnects;194
1.10.6;7.6 Conclusions;196
1.11;Ch-8 Chemical Sensing with SWNT FETs;200
1.11.1;8.1 Introduction;200
1.11.2;8.2 Source of Conductance Change;201
1.11.2.1;8.2.1 Schottky Barrier Modulation Due to Gas Adsorption;202
1.11.2.2;8.2.2 Charge Transfer to Nanotube;204
1.11.3;8.3 Modeling Gas Adsorption;204
1.11.4;8.4 Application to Data;206
1.11.4.1;8.4.1 Contributions from the Metal Contact Versus the Channel;206
1.11.4.2;8.4.2 Partially Exposed Devices;208
1.11.4.3;8.4.3 Transient Response;210
1.11.4.4;8.4.4 Surface Binding;212
1.11.5;8.5 Additional Aspects of SWNT FET Sensors;212
1.11.5.1;8.5.1 Response Time;213
1.11.5.2;8.5.2 Chemical Specificity;214
1.11.5.3;8.5.3 Sensitivity;214
1.11.5.4;8.5.4 Recovery;215
1.11.5.5;8.5.5 Capacitance-Based Sensing;215
1.11.6;8.6 Summary;215
1.12;Ch-9 Single0Walled Carbon Nanotubes for High Performance Thin Film Electronics;219
1.12.1;9.1 Introduction and Motivation;219
1.12.2;9.2 Film Formation Techniques;220
1.12.2.1;9.2.1 Solution Deposition Methods;221
1.12.2.1.1;9.2.1.1 Solution Casting via Controlled Flocculation;221
1.12.2.1.2;9.2.1.2 Printing Solution-Cast SWNT from a St222
1.12.2.2;9.2.2 Chemical Vapor Deposition Growth;224
1.12.2.2.1;9.2.2.1 Unguided Growth on Amorphous Substrates;225
1.12.2.2.2;9.2.2.2 Guided Growth on Certain Crystal Substrates;225
1.12.3;9.3 Physical Properties and Device Physics;228
1.12.3.1;9.3.1 Conducting Films of SWNTs;228
1.12.3.2;9.3.2 Semiconducting Films;229
1.12.3.3;9.3.3 Capacitance Coupling in SWNT TFTs;231
1.12.3.4;9.3.4 Control of Electronic Properties;232
1.12.3.4.1;9.3.4.1 Selective Removal, Functionalization of Metallic Tubes;233
1.12.3.4.2;9.3.4.2 Chemical Modification of Transport;233
1.12.3.5;9.3.5 Mechanical and Optical Properties;235
1.12.4;9.4 Devices and Circuits;236
1.12.4.1;9.4.1 Materials and Processing;237
1.12.4.1.1;9.4.1.1 Transfer Techniques;237
1.12.4.1.2;9.4.1.2 Dielectrics;238
1.12.4.1.3;9.4.1.3 Contacts;239
1.12.4.2;9.4.2 Transistors Based on SWNT Networks;241
1.12.4.3;9.4.3 Transistors Based on SWNT Arrays;242
1.12.4.4;9.4.4 Inverters and Logic Gates;245
1.12.5;9.5 Outlook and Conclusions;246
1.13;Ch-10 Circuits, Applications and Outlook;255
1.13.1;10.1 Introduction;255
1.13.2;10.2 Nanotubes for Digital Electronics;255
1.13.2.1;10.2.1 Scaling of FETs;255
1.13.2.2;10.2.2 The Potential of Nanotube Transistors;259
1.13.2.3;10.2.3 SWNT-FET Design Considerations for Digital Circuits;260
1.13.3;10.3 Other Applications and Exploratory Products;265
1.13.4;10.4 Challenges;266
1.13.5;10.5 Conclusions;267
1.14;Index;271




