Jiang | Sulfur Chemistry | E-Book | www.sack.de
E-Book

E-Book, Englisch, 477 Seiten

Reihe: Topics in Current Chemistry Collections

Jiang Sulfur Chemistry


1. Auflage 2019
ISBN: 978-3-030-25598-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 477 Seiten

Reihe: Topics in Current Chemistry Collections

ISBN: 978-3-030-25598-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.
Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Jiang Sulfur Chemistry jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Contents;6
2;Preface;8
3;Analysis of US FDA-Approved Drugs Containing Sulfur Atoms;10
3.1;Abstract;10
3.2;1 Introduction;11
3.3;2 Diversity of Sulfur-Containing Functional Groups in US FDA Drugs;11
3.3.1;2.1 Sulfonamides;11
3.3.2;2.2 ?-Lactams;18
3.3.3;2.3 Thioethers;21
3.3.4;2.4 Thiazoles;24
3.3.5;2.5 Thiophenes;26
3.3.6;2.6 Phenothiazines;28
3.3.7;2.7 Sulfoxides;29
3.3.8;2.8 C=S and P=S Structures;31
3.3.9;2.9 Thionucleotides;33
3.3.10;2.10 Sulfones;34
3.3.11;2.11 Sulfates;35
3.3.12;2.12 Macrocyclic Disulfides;37
3.3.13;2.13 Miscellaneous Acyclic Sulfur Functional Groups;38
3.3.14;2.14 Miscellaneous Cyclic Sulfur Functional Groups;39
3.4;3 US FDA Drugs Containing Multiple Sulfur Atoms;41
3.5;4 Presence of Sulfur Atoms in Combination Drugs;41
3.6;5 Conclusion;42
3.7;Acknowledgements;42
3.8;References;42
4;Sulfur-Containing Agrochemicals;44
4.1;Abstract;44
4.2;Introduction;45
4.3;Sulfonylureas;48
4.3.1;Sulfonylurea Herbicides;48
4.3.2;Sulfonylamino-Carbonyl-Triazolinones Herbicides;54
4.4;Sulfonamides;55
4.4.1;Sulfonamide Herbicides;55
4.4.2;Triazolopyrimidine Sulfonamide Herbicides;57
4.4.3;Sulfonamide Herbicide Safeners;58
4.4.4;Sulfonamide Fungicides;60
4.4.5;Sulfamide Fungicides;60
4.5;Sulfur-Containing Heterocyclics;61
4.5.1;Thiazole Fungicides;61
4.5.2;Thiazole Insecticides;63
4.5.3;Thiazole Herbicide Safener;65
4.5.4;Benzothiazole Herbicides;66
4.5.5;Thiazolidine Fungicides;67
4.5.6;Thiazolidine Insecticides;67
4.5.7;Thiophene Fungicides;68
4.5.8;Thiophene Nematicide;69
4.6;Thioureas;70
4.7;Sulfides, Sulfoxides, Sulfones;71
4.7.1;Methylthio-S-Triazine Herbicides;71
4.7.2;Sulfonyl-Isoxazoline Herbicides;72
4.7.3;Methyl Sulfone-Containing Herbicides;73
4.7.4;Sulfonyl--Triazole--Carboxamide Herbicides;76
4.7.5;Sulfone Nematicide;77
4.8;Sulfoximines;78
4.9;Conclusions;78
4.10;Acknowledgements;79
4.11;References;79
5;Thiophene-Based Organic Semiconductors;88
5.1;Abstract;88
5.2;Introduction;88
5.3;Thiophene;89
5.4;Thiophene-Based Small Molecules/Oligomers As Organic Semiconductors;91
5.4.1;Organic Photovoltaics;92
5.4.2;Organic Field-Effect Transistors;96
5.4.3;Organic Light-Emitting Diodes;98
5.5;Fused Thiophene-Based Small Molecules As Organic Semiconductors;101
5.5.1;Organic Photovoltaics;102
5.5.2;Organic Field-Effect Transistors;107
5.5.3;Organic Light-Emitting Diodes;110
5.6;Thiophene and Fused Thiophene-Based Polymers as Organic Semiconductors;113
5.6.1;Organic Photovoltaics;114
5.6.2;Organic Field-Effect Transistors;120
5.6.3;Organic Light-Emitting Diodes;122
5.7;Conclusions;126
5.8;References;127
6;Synthesis and Applications of Polymers Made by Inverse Vulcanization;133
6.1;Abstract;133
6.2;1 Synthesis of Polymers by Inverse Vulcanization;133
6.3;2 Applications of Polymers Prepared by Inverse Vulcanization;138
6.3.1;2.1 Cathode Materials for Li–S Batteries;138
6.3.2;2.2 Dynamic and Repairable Materials;140
6.3.3;2.3 Optics Applications;143
6.3.4;2.4 Metal Sorption;147
6.3.5;2.5 Oil Spill Remediation;151
6.3.6;2.6 Controlled-Release Fertilizers;151
6.4;3 Other Applications and Outlook;154
6.5;Acknowledgements;157
6.6;References;157
7;Engineered C–S Bond Construction;160
7.1;Abstract;160
7.2;1 Introduction;161
7.2.1;1.1 Importance of Thioethers;161
7.3;2 First-Row 3d Series Transition-Metal Catalysis;162
7.3.1;2.1 Fe, Mn, and Co-Catalyzed Reactions in C–S Bond Formation;162
7.3.2;2.2 Ni and Cu Catalysis in C–S Coupling Reactions;166
7.4;3 Second-Row 4d Series Transition-Metal Catalysis;179
7.4.1;3.1 Pd- and Ru-Catalyzed Reactions in C–S Bond Formation;179
7.4.2;3.2 Rh and Ag Catalysis in C–S Coupling Reactions;183
7.5;4 Third-Row 5d Series Transition-Metal Catalysis;184
7.5.1;4.1 La and Au Catalysis in C–S Bond Formation;184
7.6;5 Post-Transition Metal Catalysis;185
7.6.1;5.1 In and Bi Catalysis in C–S Cross-Coupling Reactions;185
7.7;6 Alternative Systems for C–S bond Formation by Using Different Sulfur-Containing Surrogates;186
7.7.1;6.1 Thiol as Sulfur-Containing Precursor;187
7.7.2;6.2 Disulfide and Sulfoxide as Sulfur-Containing Precursor;190
7.7.3;6.3 RSO2Na, Isothiocyanates, and Arenesulfonyl Hydrazine as Sulfur-Containing Precursor;196
7.8;7 Conclusions;200
7.9;Acknowledgements;201
7.10;References;201
8;C–S Bond Activation;205
8.1;Abstract;205
8.2;1 Introduction;205
8.3;2 Stoichiometric Reactions;206
8.3.1;2.1 Cleavage of C–S Bonds of Thiophene Analogues;206
8.3.2;2.2 Cleavage of Allylic C–S Bonds;208
8.3.3;2.3 Cleavage of Acyl C–S Bonds;209
8.3.4;2.4 Cleavage of Alkenyl and Aryl C–S Bonds;211
8.4;3 Catalytic Cross-Coupling Reactions;211
8.4.1;3.1 Cross-Coupling Reactions of Sulfides;212
8.4.1.1;3.1.1 Kumada–Tamao–Corriu-Type Coupling;212
8.4.1.2;3.1.2 Negishi-Type Coupling;213
8.4.1.3;3.1.3 Suzuki–Miyaura-Type Coupling;215
8.4.1.4;3.1.4 With Other Nucleophiles;216
8.4.2;3.2 Cross-Coupling Reactions of Thioesters;219
8.4.3;3.3 Cross-Coupling Reactions of Sulfonium Salts;221
8.4.4;3.4 Ring-Opening Transformation of Thiophenes;222
8.4.5;3.5 Cross-Coupling Reactions of Sulfoxides;225
8.4.6;3.6 Cross-Coupling Reaction of Sulfones;227
8.4.7;3.7 Cross-Coupling Reaction of Sulfonyl Chlorides;228
8.4.8;3.8 Cross-Coupling Reaction of Arylsulfinates;231
8.4.9;3.9 Cross-Coupling Reaction of Sulfonyl Hydrazides;232
8.5;4 Palladium-Catalyzed Desulfitative Addition of Arylsulfinates to Unsaturated Compounds;234
8.6;5 Transition Metal-Catalyzed Insertion of CO or Alkynes into C–S Bonds;235
8.6.1;5.1 Insertion of CO or Its Equivalent into C–S Bonds;235
8.6.2;5.2 Carbothiolation: Insertion of Alkynes into C–S Bonds;237
8.7;6 Conclusions;240
8.8;References;240
9;The Construction and Application of C=S Bonds;244
9.1;Abstract;244
9.2;1 General Aspects of Thiocarbonyl (C=S) Groups;244
9.3;2 Tautomerization;245
9.4;3 Generation and Synthesis of Thioaldehydes and Thioketones;247
9.5;4 Reactions of Thioaldehydes and Thioketones;254
9.5.1;4.1 Reactions with Nitrogen Nucleophiles;254
9.5.2;4.2 Reactions with Carbon Nucleophiles;254
9.5.3;4.3 Reactions with Carbon Electrophiles;259
9.5.4;4.4 Concerted Reactions;260
9.6;5 Conclusions;261
9.7;References;262
10;Thiophene Syntheses by Ring Forming Multicomponent Reactions;265
10.1;Abstract;265
10.2;1 Introduction;266
10.3;2 Ring-Forming Multicomponent Reactions;267
10.3.1;2.1 Outline;267
10.3.2;2.2 Sulfur Source Contributing 5 Atoms to the Thiophene Ring;267
10.3.3;2.3 Sulfur Source Contributing 4 Atoms to the Thiophene Ring;268
10.3.4;2.4 Sulfur Source Contributing 3 Atoms to the Thiophene Ring;268
10.3.4.1;2.4.1 Ketenimines as Key Intermediates;269
10.3.4.2;2.4.2 ?-Oxothiamides as Building Blocks;269
10.3.4.3;2.4.3 ?-Cyanothiamides;271
10.3.4.4;2.4.4 Dithioesters as Building Blocks;272
10.3.4.5;2.4.5 1,4-Dithiane-2,5-Diol;272
10.3.5;2.5 Sulfur Source Contributing 2 Atoms to the Thiophene Ring;272
10.3.5.1;2.5.1 Dithioester as a Building Block;272
10.3.5.2;2.5.2 Carbondisulfide;273
10.3.5.3;2.5.3 Thiocyanate;274
10.3.5.4;2.5.4 ?-Mercaptoester;277
10.3.5.5;2.5.5 Other Mercapto Derivatives;277
10.3.5.6;2.5.6 1,3-Thiazolidinedione;278
10.3.6;2.6 Sulfur Source Contributing 1 Atom to the Thiophene Ring;279
10.3.6.1;2.6.1 1,4-Phenylenedimethanethiol as a Sulfur Source;279
10.3.6.2;2.6.2 Sulfide as a Sulfur Source;279
10.3.6.3;2.6.3 Sulfur in a (2?+?2 + 1) Cycloaddition;281
10.3.6.4;2.6.4 The Gewald Reaction;282
10.4;3 Conclusions;282
10.5;Acknowledgements;282
10.6;References;282
11;Sulfur–Sulfur Bond Construction;288
11.1;Abstract;288
11.2;1 Introduction;288
11.3;2 The Construction of Symmetrical Disulfides;290
11.3.1;2.1 Oxidation of Thiol;292
11.3.1.1;2.1.1 O2 or Air as the Oxidant;292
11.3.1.2;2.1.2 Iodine, Bromine, and N-Bromo Derivatives;292
11.3.1.3;2.1.3 Hydrogen Peroxide (H2O2) as Oxidant;294
11.3.1.4;2.1.4 Metal Salt or Metal Oxide as Oxidant;294
11.3.1.5;2.1.5 High-Valent Sulfur Oxidant (DMSO, Sulfonyl Chloride, Peroxydisulfate) as Oxidant;295
11.3.1.6;2.1.6 Diethyl Azodicarboxylate (DEAD) and its Derivatives as Oxidant;295
11.3.1.7;2.1.7 Other Oxidants;296
11.3.1.8;2.1.8 Photo-catalyzed disulfide formation;296
11.3.2;2.2 Conversion from Sulfur Monochloride (S2Cl2);299
11.3.3;2.3 Conversion from Sodium Disulfide (Na2S2);301
11.3.4;2.4 Conversion from Elemental Sulfur;302
11.3.5;2.5 Reduction of Sulfonyl Halides;302
11.4;3 The Construction of Unsymmetrical Disulfides;303
11.4.1;3.1 Oxidation of Thiols;304
11.4.1.1;3.1.1 I2 as Oxidant;304
11.4.1.2;3.1.2 H2O2 as Oxidant;305
11.4.1.3;3.1.3 DDQ as Oxidant;306
11.4.1.4;3.1.4 Dimethyl Sulfoxide (DMSO) as Oxidant;307
11.4.1.5;3.1.5 DEAD and its Derivatives as Oxidant;307
11.4.2;3.2 Disulfane Exchange;309
11.4.2.1;3.2.1 Thiol Exchange with Symmetrical Disulfide;309
11.4.2.2;3.2.2 Rhodium-catalyzed Disulfane Exchange;310
11.4.3;3.3 Nucleophile Substitution Reaction;311
11.4.3.1;3.3.1 Benzotriazole (Bt) as the Leaving Group;311
11.4.3.2;3.3.2 Imides or N-Trifluoroacetyl as the Leaving Group;313
11.4.3.3;3.3.3 Sulfonyl and Sulfonates as the Leaving Group;314
11.4.3.4;3.3.4 Thiocarbonate and Thiophosphate as the Leaving Group;316
11.4.3.5;3.3.5 Chlorine as Leaving Group;317
11.4.4;3.4 The Oxidative Cross-coupling Reaction;319
11.4.5;3.5 The Opening of Thiiranes;320
11.4.6;3.6 The Comproportionation Between Two Different Inorganic Sulfur Salts;321
11.5;4 Conclusions;323
11.6;References;323
12;Sulfur Radicals and Their Application;328
12.1;Abstract;328
12.2;1 Thiyl (Sulfenyl) (RS·) and Related Sulfur Radicals;328
12.2.1;1.1 Thiol-ene and Thiol-yne;329
12.2.2;1.2 Other Reactions Forming C–S Bonds;334
12.2.2.1;1.2.1 Aryl C–S Bonds;334
12.2.2.2;1.2.2 Aliphatic C–S Bonds;336
12.2.2.3;1.2.3 Formation of S–S Bonds;338
12.2.2.4;1.2.4 Formation of C–C Bonds;338
12.2.2.5;1.2.5 Desulfurization;339
12.2.3;1.3 Photoredox Chemistry;339
12.2.4;1.4 Biochemistry;341
12.2.5;1.5 Thiocyanato Radical (·SCN);342
12.2.6;1.6 Iminothiyl Radicals;342
12.2.7;1.7 Aminothiyl Radicals (R2N–S·);343
12.3;2 Sulfinyl Radicals (RSO);344
12.4;3 Sulfonyl Radicals (RSO2);345
12.4.1;3.1 Addition to Alkenes and Alkynes;345
12.4.1.1;3.1.1 ?-Cyano Adducts;346
12.4.1.2;3.1.2 ?-Halo Adducts;346
12.4.1.3;3.1.3 Azide Adducts;346
12.4.1.4;3.1.4 Selenide Adducts;347
12.4.1.5;3.1.5 Trapping with Oxygen;347
12.4.1.6;3.1.6 Trapping Followed by Elimination or Substitution;348
12.4.1.7;3.1.7 Radical Oxidation;348
12.4.1.8;3.1.8 Trapping by Arene;348
12.4.1.9;3.1.9 Trapping by Alkene or Alkyne;349
12.4.1.10;3.1.10 Trapping by HAT;349
12.4.2;3.2 ?-Elimination of Sulfonyl Radicals;349
12.4.3;3.3 ?-Cleavage of Sulfonyl Radicals;350
12.5;4 Radical Ions;351
12.5.1;4.1 Two-Center Three-Electron Bonds;351
12.5.2;4.2 Reactions of Thioether Radical Cations;353
12.5.2.1;4.2.1 ?-C–H Bond Cleavage;353
12.5.2.2;4.2.2 ?-C–S Bond Cleavage;354
12.5.2.3;4.2.3 ? C–C Bond Cleavage;355
12.5.3;4.3 Oxidation;356
12.5.3.1;4.3.1 Photooxidation of Thioethers;356
12.5.3.2;4.3.2 Iron-Catalyzed Oxidation;356
12.5.4;4.4 Thioamide and Thiocarbamate Radical Cations;357
12.5.5;4.5 Disulfide Radical Cations;358
12.5.6;4.6 Sulfoxide Radical Cations;359
12.5.7;4.7 Disulfide Radical Anions;360
12.5.7.1;4.7.1 Alkyl and Aryl Disulfide Anion Radicals;360
12.5.7.2;4.7.2 Dithiocyanate Radical Anion;361
12.6;Acknowledgements;361
12.7;References;361
13;Glycosyl Sulfoxides in Glycosylation Reactions;370
13.1;Abstract;370
13.2;1 Introduction;371
13.3;2 Sulfinyl Group Located on Anomeric Position;372
13.3.1;2.1 Kahne Glycosylation;372
13.3.2;2.2 Crich cis-mannosylation;381
13.3.3;2.3 Oxathiane S-oxide Glycosylation;386
13.3.4;2.4 Mechanism Aspects;389
13.4;3 Sulfinyl Group Located at Remote Site of Anomeric Position;391
13.5;4 Conclusions;395
13.6;Acknowledgements;396
13.7;References;396
14;Chiral Sulfoxide Ligands in Asymmetric Catalysis;402
14.1;Abstract;402
14.2;1 Introduction;402
14.3;2 S-N Ligands;403
14.4;3 S-P Ligands;410
14.5;4 S–S Ligands;420
14.6;5 S-Olefin Ligands;425
14.7;6 S-O Ligands;427
14.8;7 Summary;428
14.9;Acknowledgements;428
14.10;References;428
15;Sulfur-Based Ylides in Transition-Metal-Catalysed Processes;431
15.1;Abstract;431
15.2;1 Introduction;432
15.3;2 Metal–Ylide Complexes;433
15.4;3 Non-Carbene-Based Transition Metal-Mediated Reactions of Sulfur Ylides;434
15.4.1;3.1 Sulfur Ylides as Single-Carbon Synthons in Formal (n?+?1) Cycloadditions;434
15.4.2;3.2 Transition Metals as ?-Acid Catalysts;439
15.4.3;3.3 Sulfoxonium Ylides in C–H Functionalisation Processes;445
15.4.4;3.4 Sulfonium Ylides as C–S Activation Precursors;447
15.4.5;3.5 Photocatalysis Involving Sulfonium Ylides;449
15.5;4 Sulfonium and Sulfoxonium Ylides as Metal-Carbene Precursors;451
15.5.1;4.1 Cyclopropanation Reactions;451
15.5.2;4.2 Insertion Reactions into X–H Bonds;453
15.5.3;4.3 Insertion Reactions into C–H Bonds;455
15.5.4;4.4 Miscellaneous Metal Carbenoid Reactions;457
15.6;5 Cascade Reactions Involving Transition Metal-Catalysed Ylide Formation;457
15.6.1;5.1 [2,3]-Rearrangement of Sulfonium Ylides;458
15.6.2;5.2 1,2-Migration of Sulfonium Ylides;468
15.6.3;5.3 Synthesis of Small Rings;470
15.6.3.1;5.3.1 Epoxidation;471
15.6.3.2;5.3.2 Aziridination;472
15.6.3.3;5.3.3 Cyclopropanation;472
15.6.4;5.4 In Situ Generation of Thiocarbonyl Ylides;472
15.7;6 Outlook;473
15.8;Acknowledgements;474
15.9;References;474



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.