Kapoor / Arai | Advances in Computer Vision | Buch | 978-3-030-17794-2 | sack.de

Buch, Englisch, Band 943, 821 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1241 g

Reihe: Advances in Intelligent Systems and Computing

Kapoor / Arai

Advances in Computer Vision

Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1
1. Auflage 2020
ISBN: 978-3-030-17794-2
Verlag: Springer International Publishing

Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1

Buch, Englisch, Band 943, 821 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1241 g

Reihe: Advances in Intelligent Systems and Computing

ISBN: 978-3-030-17794-2
Verlag: Springer International Publishing


This book presents a remarkable collection of chapters covering a wide range of topics in the areas of Computer Vision, both from theoretical and application perspectives. It gathers the proceedings of the Computer Vision Conference (CVC 2019), held in Las Vegas, USA from May 2 to 3, 2019. The conference attracted a total of 371 submissions from pioneering researchers, scientists, industrial engineers, and students all around the world. These submissions underwent a double-blind peer review process, after which 120 (including 7 poster papers) were selected for inclusion in these proceedings.

The book’s goal is to reflect the intellectual breadth and depth of current research on computer vision, from classical to intelligent scope. Accordingly, its respective chapters address state-of-the-art intelligent methods and techniques for solving real-world problems, while also outlining future research directions. Topic areas covered include Machine Vision and Learning, Data Science,Image Processing, Deep Learning, and Computer Vision Applications.
Kapoor / Arai Advances in Computer Vision jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Deep Learning for Detection of Railway Signs and Signals.- 3D Conceptual Design using Deep Learning.- The Effect of Color Channel Representations on the Transferability of Convolutional Neural Networks.- Weakly Supervised Deep Metric Learning for Template Matching.- Deep Learning vs. Traditional Computer Vision.- Deep Cross-modal Age Estimation.- No-reference Image Denoising Quality Assessment.- Plant Leaf Disease Detection using Adaptive Neuro-Fuzzy Classification.- Fusion of CNN- and COSFIRE-based Features with Application to Gender Recognition from Face Images.- Learning of Shape Models from Exemplars of Biological Objects in Images.- Researcher Profile Ontology for Academic Environment.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.