E-Book, Englisch, 648 Seiten
Karger-Kocsis / Bárány Polypropylene Handbook
1. Auflage 2019
ISBN: 978-3-030-12903-3
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Morphology, Blends and Composites
E-Book, Englisch, 648 Seiten
ISBN: 978-3-030-12903-3
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book extensively reviews Polypropylene (PP), the second most widely produced thermoplastic material, having been produced for over 60 years. Its synthesis, processing and application are still accompanied by vigorous R&D developments because the properties of PP are at the borderline between those of commodity and engineering thermoplastics.
Readers are introduced to various tacticities and polymorphs of PP, and their effects on structural properties. Further, the book addresses the control of optical properties using nucleants, provides strategies for overcoming the limited cold/impact resistance of PP, examines in detail the effects of recycling, and presents guidelines for the property modification of PPs through foaming, filling and reinforcing with respect to target applications. Special attention is paid to descriptions and models of properties as a function of morphological variables. Last but not least, the book suggests potential practical applications of PP-based systems, especially in the packaging, appliances, building/construction, textile and automotive sectors.
Each chapter, written by internationally respected scientists, reflects the current state-of-art in the respective field and offers a vital source of information for students, researchers and engineers interested in the morphology, properties, testing and modeling of PP and PP-based systems. The content is indispensable to the appropriate application of PPs and related composites.
József Karger-Kocsis (Mar 4, 1950 - Dec 13, 2018) was a professor at the Department of Polymer Engineering, Faculty of Mechanical Engineering at the Budapest University of Technology and Economics (BME) since 2009. He received his MSc in Chemical Engineering in 1974, and his Dr.techn. in 1977. In 1983 he received his PhD in chemical sciences from the Moscow, Lomonossow Institute of Fine Chemicals Technology, his DSc from the Hungarian Academy of Sciences in 1991, and in 1995 the Universität Kaiserslautern, Germany, granted him the Dr.-Ing. Habil title.
During his career he also worked at the Research Institute for the Plastics Industry, and Taurus Hungarian Rubber Works, both in Budapest, Hungary; for the TUHH in Hamburg and for the Institute for Composite Materials in Kaiserslautern, both in Germany; and for the Tshwane University of Technology in Pretoria, South Africa.
Professor Karger-Kocsis has been awarded many prizes, acknowledgements and scholarships, and has more than 500 publications. For his complete CV please refer to the Budapest University of Technology and Economics (the website of the Department of Polymer Engineering, BME). Tamás Bárány is associate professor of the Department of Polymer Engineering, the Faculty of Mechanical Engineering at the Budapest University of Technology and Economics (BME). He received his MSc in Industrial Design Engineering in 2001. Subsequently, he received his PhD and became a lecturer in 2004, an assistant professor in 2005, and since 2008 he has been holding the position of associate professor and head of the Department of Polymer Engineering.
He, too, has been awarded many prizes, acknowledgements and scholarships, and he has more than 80 publications. He is busily involved in tutorial activities, writing articles and organizing conferences.For his complete CV please refer to the Budapest University of Technology and Economics (the website of the Department of Polymer Engineering, BME).
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;In Memoriam József Karger-Kocsis;7
3;Contents;9
4;Contributors;10
5;1 Tacticity, Regio and Stereoregularity;12
5.1;Abstract;12
5.2;1.1 Introduction;12
5.3;1.2 Definition and Nomenclature;14
5.4;1.3 13C NMR of Polypropylenes;19
5.5;1.4 Steric Defects in PP and Models for Stereocontrol;21
5.6;1.5 Regio Defects in PP and Models for Regiocontrol;28
5.7;1.6 Heterogeneous Versus Homogeneous ZN Catalysts;32
5.8;1.7 Further Techniques for Polypropylene Tacticity Analysis;35
5.9;1.8 Polypropylene Microstructures Obtained by Non-metallocene Ligands and by Late Transition Metal;37
5.10;1.9 Concluding Remarks;39
5.11;Acknowledgements;40
5.12;References;40
6;2 Solid State Polymorphism of Isotactic and Syndiotactic Polypropylene;47
6.1;Abstract;47
6.2;2.1 Introduction;48
6.3;2.2 Chain Conformation of Isotactic and Syndiotactic Polypropylene in the Crystalline State;50
6.3.1;2.2.1 Isotactic Polypropylene;51
6.3.2;2.2.2 Syndiotactic Polypropylene;54
6.4;2.3 Crystal Polymorphism of Isotactic Polypropylene;54
6.5;2.4 The Crystal Structure of ? Form;58
6.5.1;2.4.1 The Crystal Structure of ? Form;62
6.5.2;2.4.2 Structural Disorder of ? Form of iPP;67
6.5.3;2.4.3 Crystal Structure of ? Form;69
6.5.4;2.4.4 Mesomorphic Form of iPP;71
6.5.5;2.4.5 Crystal Structure of the Trigonal Form of iPP;73
6.5.6;2.4.6 The “New Mesomorphic” Form in Copolymers of Isotactic Polypropylene with Branched Comonomers;78
6.6;2.5 Crystal Polymorphism of Syndiotactic Polypropylene;82
6.6.1;2.5.1 Crystal Structure of Form I;85
6.6.2;2.5.2 Structural Disorder in Form I;89
6.6.3;2.5.3 Crystal Structure of Form II;94
6.6.4;2.5.4 Structural Disorder in Form II;98
6.6.5;2.5.5 Crystal Structure of Form III;103
6.6.6;2.5.6 Crystal Structure of Form IV;107
6.6.7;2.5.7 The Trans-planar Mesomorphic Form of sPP;108
6.6.8;2.5.8 Helical Mesophase in Syndiotactic Copolymers of Propylene;115
6.7;2.6 Conclusions;116
6.8;References;118
7;3 Polypropylene Nucleation;130
7.1;Abstract;130
7.2;3.1 Introduction;131
7.3;3.2 Crystallization Process;133
7.4;3.3 Nucleation, the Targeted Manipulation of Crystalline Structure;140
7.4.1;3.3.1 Basic Characterization of Nucleating Agents;140
7.4.2;3.3.2 “Conventional” Heterogeneous Nucleating Agents;143
7.4.3;3.3.3 Soluble Nucleating Agents, Organogelators and Clarifiers for ?-iPP;149
7.4.4;3.3.4 Crystallization of iPP in the Presence of Soluble Organogelators;154
7.4.5;3.3.5 Estimation of Solubility Limit of Organogelators;159
7.4.6;3.3.6 Supermolecular Structure Formed in the Presence of Organogelators;163
7.4.7;3.3.7 Nucleating Agent Based on Trisamides of Trimesic Acid;168
7.4.8;3.3.8 Soluble Nucleating Agents for ?-iPP;169
7.5;3.4 Structure-Property Case Studies;175
7.5.1;3.4.1 Prediction of Tensile Modulus from Crystalline Parameters;175
7.5.2;3.4.2 Obtaining Balanced Properties by Efficient Nucleation;176
7.5.3;3.4.3 Improvement of Optical Properties by Efficient Nucleation;179
7.6;3.5 Summary;182
7.7;Acknowledgements;183
7.8;References;183
8;4 Crystallization of Polypropylene;194
8.1;Abstract;194
8.2;4.1 Introduction (Overview);195
8.3;4.2 Methods of Crystallization Studies;197
8.4;4.3 Polymorphism;203
8.5;4.4 Nucleation and Crystal Growth in General;208
8.6;4.5 Structure of Single Crystal;210
8.7;4.6 Structure of Spherulite;213
8.8;4.7 Shish-Kebabs;218
8.9;4.8 Nucleation Theories;219
8.10;4.9 Formation of Spherulitic Structure;226
8.11;4.10 Crystallization of PP in Specific Conditions;234
8.12;4.11 The Nucleating Agents;238
8.13;4.12 Melting of Polypropylene;239
8.14;References;242
9;5 Morphology Development and Control;252
9.1;Abstract;252
9.2;5.1 Introduction;253
9.2.1;5.1.1 Characteristics of Polypropylene;254
9.2.2;5.1.2 Processing of PP;255
9.3;5.2 Crystallization Kinetics of PP;255
9.3.1;5.2.1 Effect of Temperature;255
9.3.2;5.2.2 Effect of Pressure;258
9.3.3;5.2.3 Effect of Flow;261
9.3.4;5.2.4 Effect of Nucleating Agents;262
9.3.5;5.2.5 Effect of Stereo-Defects;265
9.4;5.3 Crystallization Kinetics Models;266
9.4.1;5.3.1 Quiescent Crystallization Kinetics;266
9.4.2;5.3.2 Flow-Induced Crystallization Kinetics;268
9.5;5.4 Injection Molding;270
9.5.1;5.4.1 Morphology of Injection Molded PP;270
9.5.2;5.4.2 Morphology of Micro-Injection-Molded PP;273
9.5.3;5.4.3 Advanced Methods to Control Morphology of Injection Molded Parts;275
9.6;5.5 Modeling Morphology in Injection Molded Parts;283
9.6.1;5.5.1 Fibrillar Morphology;283
9.6.2;5.5.2 Distribution of Spherulite Diameters;285
9.6.3;5.5.3 Simulation of Morphology Development in Injection Molded IPP: A Case Study;286
9.7;5.6 Other Processing Techniques;294
9.7.1;5.6.1 Compression Molding;294
9.7.2;5.6.2 Extrusion-Related Techniques;295
9.8;References;296
10;6 Polypropylene Copolymers;304
10.1;Abstract;304
10.2;6.1 History of PP Copolymers;305
10.3;6.2 Homogeneous Random Copolymers;307
10.3.1;6.2.1 Ethylene/Propylene Random Copolymers;307
10.3.2;6.2.2 Propylene Random Co- and Terpolymers with Higher ?-Olefins;316
10.4;6.3 Heterophasic Copolymers;324
10.4.1;6.3.1 Matrix Design;331
10.4.2;6.3.2 Elastomer Design;334
10.4.3;6.3.3 Modification of Heterophasic Copolymers;344
10.5;6.4 Application of PP Copolymers;349
10.6;References;354
11;7 Particulate Filled Polypropylene: Structure and Properties;365
11.1;Abstract;366
11.2;7.1 Introduction;366
11.3;7.2 Factors Determining the Properties of Particulate Filled Polymers;368
11.4;7.3 Filler Characteristics;370
11.4.1;7.3.1 Particle Size and Distribution;370
11.4.2;7.3.2 Specific Surface Area, Surface Energy;371
11.4.3;7.3.3 Particle Shape;371
11.4.4;7.3.4 Other Characteristics;372
11.5;7.4 Structure;373
11.5.1;7.4.1 Crystalline Matrices, Nucleation;373
11.5.2;7.4.2 Segregation, Attrition;375
11.5.3;7.4.3 Aggregation;375
11.5.4;7.4.4 Orientation of Anisotropic Particles;377
11.6;7.5 Interfacial Interactions, Interphase;378
11.6.1;7.5.1 Type and Strength of Interaction;379
11.6.2;7.5.2 Interphase Formation;381
11.6.2.1;7.5.2.1 Wetting;384
11.7;7.6 Surface Modification;385
11.7.1;7.6.1 Non-reactive Treatment;385
11.7.2;7.6.2 Coupling;387
11.7.3;7.6.3 Functional Polymers;388
11.7.4;7.6.4 Soft Interlayer;389
11.8;7.7 Local Micromechanical Deformations;390
11.8.1;7.7.1 Stress Distribution;390
11.8.2;7.7.2 Debonding;390
11.8.3;7.7.3 Other Deformation Mechanisms;391
11.9;7.8 Properties;393
11.9.1;7.8.1 Rheological Properties;394
11.9.2;7.8.2 Stiffness;395
11.9.3;7.8.3 Properties Measured at Large Deformations;396
11.9.4;7.8.4 Fracture and Impact Resistance;398
11.9.5;7.8.5 Flammability;399
11.9.6;7.8.6 Conductivity;399
11.9.7;7.8.7 Other Properties;400
11.10;7.9 Special Composites;401
11.10.1;7.9.1 Multicomponent Materials;401
11.10.2;7.9.2 Layered Silicate Nanocomposites;404
11.10.3;7.9.3 Natural Reinforcements (Wood, Lignin);407
11.11;7.10 Conclusions;411
11.12;Acknowledgements;412
11.13;References;412
12;8 Polypropylene Blends: Properties Control by Design;426
12.1;Abstract;427
12.2;8.1 Introduction;427
12.3;8.2 Basic Principles of Polymer Blends;428
12.4;8.3 PP Binary Blends;431
12.4.1;8.3.1 PP/Thermoplastic Blends;431
12.4.1.1;8.3.1.1 PP/PA Blends;432
12.4.1.2;8.3.1.2 PP/PS Blends;432
12.4.1.3;8.3.1.3 PP/Polyethylene Co-octene (POE);433
12.4.1.4;8.3.1.4 PP/PET;433
12.4.1.5;8.3.1.5 PP/LCP;433
12.4.1.6;8.3.1.6 PP/Polysulfone;433
12.4.1.7;8.3.1.7 PP/PS Nanoblend;433
12.4.2;8.3.2 PP Thermoplastic Elastomer;434
12.4.2.1;8.3.2.1 TPO and PP/Rubber Blends;434
12.4.2.2;8.3.2.2 TPV;435
12.4.3;8.3.3 PP/Thermoset Blends;438
12.4.3.1;8.3.3.1 PP/Unsaturated Polyester Blends;439
12.4.3.2;8.3.3.2 PP/Epoxy Blends;439
12.4.3.3;8.3.3.3 PP/Novolac Blends;439
12.4.4;8.3.4 All-PP Blends;440
12.4.4.1;8.3.4.1 PP Blends with Different Tacticity;440
12.4.4.2;8.3.4.2 PP/Functional PP Blends;440
12.4.4.3;8.3.4.3 Bimodal PP Blends;441
12.4.4.4;8.3.4.4 Linear and Branched PP Blends;441
12.5;8.4 Recycled PP Blends;441
12.5.1;8.4.1 Recycled PP/Other Polymer Blends;441
12.5.2;8.4.2 PP/Recycled Polymer Blends;442
12.6;8.5 PP Ternary Blends;444
12.7;8.6 Manufacturing of PP Blends;445
12.7.1;8.6.1 Melt Blending;445
12.7.2;8.6.2 Fiber Spinning (Microfibril and Nanofibril);448
12.7.3;8.6.3 Blown Film;448
12.7.4;8.6.4 Microlayer Co-extrusion;449
12.7.5;8.6.5 Microporous Membranes and Barrier Film Processing;449
12.7.6;8.6.6 Electron Beam Irradiation;450
12.7.7;8.6.7 Foaming;451
12.7.8;8.6.8 Water-Assisted Injection Molding;452
12.7.9;8.6.9 Rotational Molding;452
12.7.10;8.6.10 In Situ Polymerization;453
12.7.11;8.6.11 Microcellular Injection Molding and Dynamic Packing Injection Molding;453
12.8;8.7 Structure-Property Relationship;453
12.8.1;8.7.1 Impact Modification and Toughening;453
12.8.2;8.7.2 Crystallization;458
12.8.3;8.7.3 Rheology;462
12.8.4;8.7.4 Other Properties;464
12.8.4.1;8.7.4.1 Foamability;464
12.8.4.2;8.7.4.2 Dyeability;465
12.8.4.3;8.7.4.3 Weatherability;465
12.9;8.8 Compatibilization of PP Blends;466
12.9.1;8.8.1 Physical Compatibilization;466
12.9.2;8.8.2 Reactive Compatibilization;470
12.9.3;8.8.3 Compatibilization Using Nanofiller;474
12.10;8.9 Optimization, Modeling and Simulation;475
12.10.1;8.9.1 Optimization;475
12.10.2;8.9.2 Modeling of Flow-Induced Crystallization;476
12.10.3;8.9.3 Molecular Simulation;477
12.11;8.10 Conclusion and Future Prospective;477
12.12;References;478
13;9 Composites;488
13.1;Abstract;489
13.2;9.1 Introduction;491
13.3;9.2 Nanocomposites;493
13.3.1;9.2.1 Preparation;494
13.3.1.1;9.2.1.1 In Situ Polymerization;495
13.3.1.2;9.2.1.2 Solvent-Assisted Techniques;496
13.3.1.3;9.2.1.3 Melt Compounding;496
13.3.2;9.2.2 Structure Development and Characterization;499
13.3.2.1;9.2.2.1 Particle Dispersion;499
13.3.2.2;9.2.2.2 Matrix Polymer (Bulk);499
13.3.2.3;9.2.2.3 Interphase;500
13.3.3;9.2.3 Properties and Their Prediction;500
13.3.3.1;9.2.3.1 Mechanical Response;501
13.3.3.2;9.2.3.2 Rheological Behavior;503
13.3.3.3;9.2.3.3 Thermal Behavior;504
13.3.3.4;9.2.3.4 Other Properties;505
13.3.4;9.2.4 Processing and Applications;506
13.4;9.3 Discontinuous Fiber-Reinforced Composites;506
13.4.1;9.3.1 Manufacturing;507
13.4.2;9.3.2 Structure Development and Characterization;509
13.4.3;9.3.3 Properties and Their Prediction;512
13.4.3.1;9.3.3.1 Mechanical Response;512
13.4.3.2;9.3.3.2 Rheological Behavior;520
13.4.3.3;9.3.3.3 Thermal Properties;521
13.4.3.4;9.3.3.4 Other Properties;522
13.4.4;9.3.4 Processing and Applications;522
13.5;9.4 Mat-Reinforced Composites;523
13.5.1;9.4.1 Manufacturing;525
13.5.2;9.4.2 Structure Development and Characterization;526
13.5.3;9.4.3 Properties and Their Prediction;529
13.5.3.1;9.4.3.1 Mechanical Response;529
13.5.3.2;9.4.3.2 Rheological Behavior;531
13.5.3.3;9.4.3.3 Thermal Behavior;532
13.5.3.4;9.4.3.4 Other Properties;533
13.5.4;9.4.4 Applications;533
13.6;9.5 Fabric-Reinforced Composites;534
13.6.1;9.5.1 Manufacturing;535
13.6.2;9.5.2 Structure Development and Characterization;539
13.6.3;9.5.3 Properties and Their Prediction;541
13.6.3.1;9.5.3.1 Mechanical Response;541
13.6.3.2;9.5.3.2 Rheological Behavior;543
13.6.3.3;9.5.3.3 Thermal Behavior;548
13.6.3.4;9.5.3.4 Other Properties;549
13.6.4;9.5.4 Processing and Applications;551
13.7;9.6 Laminate Composites;552
13.7.1;9.6.1 Manufacturing;553
13.7.2;9.6.2 Structure Development and Characterization;556
13.7.3;9.6.3 Properties and Their Prediction;560
13.7.3.1;9.6.3.1 Mechanical Response;560
13.7.3.2;9.6.3.2 Rheological Behavior;561
13.7.3.3;9.6.3.3 Thermal Behavior;561
13.7.3.4;9.6.3.4 Other Properties;562
13.7.4;9.6.4 Processing and Applications;563
13.8;9.7 Conclusion and Outlook;563
13.9;References;564
14;10 Foams;586
14.1;Abstract;586
14.2;10.1 Introduction—Basics of Foaming;587
14.2.1;10.1.1 Market Situation;587
14.2.2;10.1.2 Basics of Foaming;587
14.2.2.1;10.1.2.1 Diffusion and Solubility;588
14.2.2.2;10.1.2.2 Nucleation;590
14.2.2.3;10.1.2.3 Cell Growth;591
14.2.2.4;10.1.2.4 Cell Structure and Foam Stabilization;592
14.2.3;10.1.3 Foam Morphology and Cell Types;593
14.2.4;10.1.4 Foam Relevant Properties;594
14.2.4.1;10.1.4.1 Rheology;595
14.2.4.2;10.1.4.2 Crystallization;596
14.2.5;10.1.5 Blowing Agents;598
14.3;10.2 Foam Processing;600
14.3.1;10.2.1 Batch Processes;600
14.3.2;10.2.2 Foam Extrusion;602
14.3.3;10.2.3 Bead Foaming;608
14.3.3.1;10.2.3.1 Autoclave Bead Foams;610
14.3.3.2;10.2.3.2 Continuous Produced Bead Foams;614
14.3.3.3;10.2.3.3 Pre-expansion of EPP;615
14.3.3.4;10.2.3.4 Steam-Chest Molding;616
14.3.3.5;10.2.3.5 Fusion Process;618
14.3.4;10.2.4 Foam Injection Molding;620
14.3.4.1;10.2.4.1 Chemical Foam Injection Molding;622
14.3.4.2;10.2.4.2 Physical Foam Injection Molding;623
14.3.4.3;10.2.4.3 Mechanical Properties;624
14.3.4.4;10.2.4.4 Advantages and Disadvantages;626
14.3.4.5;10.2.4.5 Conclusion;627
14.3.5;10.2.5 Other Methods;628
14.3.5.1;10.2.5.1 Stretching of Films;628
14.3.5.2;10.2.5.2 Templated Porous Polymers;629
14.4;10.3 PP Foams and Additives;630
14.4.1;10.3.1 Temperature-Insensitive Additives;630
14.4.1.1;10.3.1.1 Foams with CaCO3;631
14.4.1.2;10.3.1.2 Foams with Talc;631
14.4.1.3;10.3.1.3 Foams with Clay;631
14.4.1.4;10.3.1.4 Foams with Carbon Fillers;634
14.4.1.5;10.3.1.5 Foams with Sodium Benzoate;636
14.4.1.6;10.3.1.6 Foams with Hollow Glass Microspheres;636
14.4.1.7;10.3.1.7 Foams with Zeolite;636
14.4.1.8;10.3.1.8 Conclusion;637
14.4.2;10.3.2 Temperature-Sensitive Additives;637
14.5;Acknowledgements;641
14.6;References;641




