Kato / Nakamura | Monopole Maps and L² -cohomology | Buch | 978-981-968471-7 | www.sack.de

Buch, Englisch, 292 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 633 g

Reihe: Springer Monographs in Mathematics

Kato / Nakamura

Monopole Maps and L² -cohomology


Erscheinungsjahr 2025
ISBN: 978-981-968471-7
Verlag: Springer

Buch, Englisch, 292 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 633 g

Reihe: Springer Monographs in Mathematics

ISBN: 978-981-968471-7
Verlag: Springer


The theme of this book is to establish a link between gauge theory and ²-cohomology theory. Although both theories focus on differential topology, they have been developed rather independently. One of the main reasons lies in the differing characteristics of these theories. This book introduces an integrated theory that bridges these subjects. One goal of the book is to propose differential-topological conjectures that are covering versions of the so-called 10/8-theorem. We include various pieces of evidence to support them. This book is almost self-contained and is accessible not only to graduate students in differential geometry but also to both the experts in ²-cohomology theory and gauge theory. This unique and fundamental book contains numerous unsolved problems, suggesting future directions of topology of smooth 4-manifolds by using various analytic methods. 


After the introduction (Chap. 1), Chap. 2 gives a quick overview of the historical progress of differential topology. Chap. 3 covers the basic subjects of spin geometry. Chaps 4 and 5 deal with the foundations of the Seiberg–Witten and the Bauer–Furuta theories. In Chaps 6 and 7, we present the basic theory of ²-cohomology, ²-Betti numbers, amenability, and residual finiteness of discrete groups. 

In Chap. 8, we treat the Singer conjecture and describe the solution to the conjecture for Kähler hyperbolic manifolds. We then describe various variations of Furuta's 10/8-inequalities and how the aspherical 10/8-inequalities conjecture is induced. We provide the evidence by examining various classes of 4-manifolds, such as aspherical surface bundles and complex surfaces.

Kato / Nakamura Monopole Maps and L² -cohomology jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Chapter 1 Introduction.- Chapter 2 A glimpse of progress of di?erential topology.- Chapter 3 Spin geometry.- Chapter 4 Seiberg–Witten theory.- Chapter 5  Bauer–Furuta theory.-  Chapter 6 ^ cohomology.- Chapter 7 ^2-Betti number and von Neumann trace.- Chapter 8 Aspherical 10/8 -inequality and Singer’s conjecture.- Solutions.- References.- Index.


Tsuyoshi Kato received his Ph.D. from Kyoto University in 1995. He is currently a Professor of Mathematics at Kyoto University.

Nobuhiro Nakamura received his Ph.D. from Kyoto University in 2006. He is currently a Professor of Mathematics at Fukushima Medical University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.