Kawash / Özyer / Agarwal | Prediction and Inference from Social Networks and Social Media | Buch | 978-3-319-84553-1 | sack.de

Buch, Englisch, 225 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 365 g

Reihe: Lecture Notes in Social Networks

Kawash / Özyer / Agarwal

Prediction and Inference from Social Networks and Social Media


Softcover Nachdruck of the original 1. Auflage 2017
ISBN: 978-3-319-84553-1
Verlag: Springer International Publishing

Buch, Englisch, 225 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 365 g

Reihe: Lecture Notes in Social Networks

ISBN: 978-3-319-84553-1
Verlag: Springer International Publishing


This book addresses the challenges of social network and social media analysis in terms of prediction and inference. The chapters collected here tackle these issues by proposing new analysis methods and by examining mining methods for the vast amount of social content produced. Social Networks (SNs) have become an integral part of our lives; they are used for leisure, business, government, medical, educational purposes and have attracted billions of users. The challenges that stem from this wide adoption of SNs are vast. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection. This text has applications to widely used platforms such as Twitter and Facebook and appeals to students, researchers, and professionals in the field.

Kawash / Özyer / Agarwal Prediction and Inference from Social Networks and Social Media jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Chapter1. Having Fun?: Personalized Activity-based Mood Prediction in Social Media.- Chapter2. Automatic Medical Image Multilingual Indexation through a Medical Social Network.- Chapter3. The Significant Effect of Overlapping Community Structures in Signed Social Networks.- Chapter4. Extracting Relations Between Symptoms by Age-Frame Based Link Prediction.- Chapter5. Link Prediction by Network Analysis.- Chapter6. Structure-Based Features for Predicting the Quality of Articles in Wikipedia.- Chapter7. Predicting Collective Action from Micro-Blog Data.- Chapter8. Discovery of Structural and Temporal Patterns in MOOC Discussion Forums.- Chapter9. Diffusion Process in a Multi-Dimension Networks: Generating, Modelling and Simulation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.