Knauth / Schoonman | Nanocomposites | E-Book | www.sack.de
E-Book

E-Book, Englisch, 250 Seiten

Reihe: Electronic Materials: Science & Technology

Knauth / Schoonman Nanocomposites

Ionic Conducting Materials and Structural Spectroscopies
1. Auflage 2007
ISBN: 978-0-387-68907-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

Ionic Conducting Materials and Structural Spectroscopies

E-Book, Englisch, 250 Seiten

Reihe: Electronic Materials: Science & Technology

ISBN: 978-0-387-68907-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



Nanocomposites have been receiving more and more attention given the improvement of synthesis techniques and the availability of powerful characterization techniques. The aim of the book is to introduce nanocomposite materials using a broad range of inorganic and organic solids. It also presents recent and not very common developments in especially spectroscopic characterization techniques, including Mössbauer, EXAFS, NMR. This should make the book attractive for a broad range of readers, including chemists and physicists.

Knauth / Schoonman Nanocomposites jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;9
3;Contributors;11
4;Composite Polymeric Electrolytes;14
4.1;1 Introduction: Early Steps and Ideas;14
4.2;2 Towards an Increase in Ionic Conductivity 2.1 Synthesis of the Systems with Conducting and Nonconducting Inorganic Fillers;16
4.3;2.2 Mixed Phase Systems: Inert Matrices + Conducting Fillers;17
4.4;2.3 Composite Systems Containing Nonconducting Ceramic Additives: The Effect of Filler Type and Size, Type of Polymer Matrices, and Type and Concentration of the Salt Used;18
4.5;2.4 The Use of Organic Additives: Polymers and Supramolecular Compounds;22
4.6;3 Addition of Specially Designed Fillers as a Method Toward an Increase in Lithium Transference Numbers 3.1 Inorganic Fillers with Specially Design Surface Groups;25
4.7;3.2 Boron Family Receptors;26
4.8;3.3 The Role of Supramolecular Additives;27
4.9;4 The Effect of Additives on Electrode–Electrolyte Interfacial Behavior;30
4.10;5 Towards Understanding Ionic Transport Phenomena in Composite Polymeric Electrolytes;32
4.11;5.1 An Amorphous Phase Model and its Use for Partially Crystalline Polymer Matrices;32
4.12;5.2 Space Charge Models;34
4.13;5.3 The Lewis Acid–Base Approach;34
4.14;6 Novel Approaches Toward Understanding Ionic Transport Phenomena in Polymeric Electrolytes;36
4.15;7 Dielectric Relaxation Studies of Ionic Transport in Composites;41
4.16;7.1 Theory of Mismatch and Disorder;41
4.17;7.2 Universal Power Law of Dielectric Response;42
4.18;7.3 The Almond–West Formalism;43
4.19;8 Phase Scale Models of Conductivity;48
4.20;8.1 Finite Gradient and Finite Element Approach;48
4.21;8.2 Effective Medium Theory;50
4.22;8.3 Random Resistor Networks;57
4.23;8.4 Comparative Study of Results;62
4.24;9 Molecular Scale Models;72
4.25;9.1 Quantum Mechanics Applied for Polymer–Salt–Filler Complexes;73
4.26;9.2 Molecular Dynamics of Polymeric Systems;75
4.27;10 Summary;78
4.28;References;78
5;Proton-Conducting Nanocomposites and Hybrid Polymers;84
5.1;1 Introduction;84
5.2;2 Synthesis;86
5.3;2.1 Nanocomposites;86
5.4;2.2 Hybrid Polymers;87
5.5;3 Characterization;89
5.6;3.1 Chemical and Electrochemical Properties;90
5.7;3.2 Physical Characterization;97
5.8;4 Nafion-Based Systems;100
5.9;4.1 Binary Oxide Additives;101
5.10;4.2 Inorganic Superacids;103
5.11;4.3 Ormosils;104
5.12;4.4 Heteropolyacids;106
5.13;4.5 Layered Additives;107
5.14;5 Hydrocarbon-Based Systems;108
5.15;5.1 SPEEK-Based Systems;109
5.16;5.2 PBI-Based Nanocomposites;113
5.17;6 Hybrid Polymers;115
5.18;7 Models 7.1 Microstructural Models;117
5.19;7.2 Thermodynamic Models;121
5.20;7.3 Transport Models;123
5.21;8 Conclusions;126
5.22;References;127
6;Hybrid Metal Oxide–Polymer Nanostructured Composites: Structure and Properties;131
6.1;1 Introduction;131
6.2;2 Experimental Aspects 2.1 Formation of Nanocomposites;132
6.3;2.2 PPX Vacuum Co-Deposition;132
6.4;2.3 Methods of Nanocomposite Analysis;133
6.5;3 Results and Discussion 3.1 PPX Thin Films;135
6.6;3.2 Pd/PPX Nanocomposites;135
6.7;3.3 Sn(SnO;138
6.8;)/PPX Nanocomposites;138
6.9;3.4 Al(Al;139
6.10;O;139
6.11;)/PPX Nanocomposites;139
6.12;3.5 Ti(TiO;142
6.13;)/PPX Nanocomposites;142
6.14;3.6 Thin-Film Adhesion;145
6.15;3.7 Electrical Resistance in Vacuum;146
6.16;3.8 Impedance Spectroscopy;147
6.17;3.9 Electrochemical Characterization;149
6.18;4 Concluding Remarks;150
6.19;References;152
7;Structure and Mechanical Properties of Nanocomposites with Rod- and Plate- Shaped Nanoparticles;154
7.1;1 Introduction;154
7.2;2 Experimental Methods;156
7.3;2.1 Materials;156
7.4;2.2 Synthesis;157
7.5;2.3 Sample Preparation;160
7.6;2.4 Experimental Analysis Techniques;161
7.7;3 Results 3.1 Moduli of PA6 Silicate Nanocomposites;163
7.8;3.2 DMA Results on PA6 Silicate Nanocomposites;165
7.9;3.3 Moisture Diffusion Measurements;165
7.10;3.4 Determination of the Yield Stress in the Melt;167
7.11;3.5 Anisotropy and Templating in Liquid Crystalline PA6– Boehmite;170
7.12;3.6 Comparison with Mechanical Models;173
7.13;3.7 Nematic Phase Behavior of Ti–Boehmite in PA6;173
7.14;4. Mechanical Modeling;175
7.15;5 Modeling of Moisture Diffusion;180
7.16;6 Summary and Outlook;181
7.17;References and Notes;182
8;Gaining Insight into the Structure and Dynamics of Clay– Polymer Nanocomposite Systems Through Computer Simulation;185
8.1;1 Introduction;185
8.2;2 Computer Simulation Techniques;186
8.3;2.1 Definition of the Potential Energy Surface;186
8.4;2.2 Structural and Statistical Data;191
8.5;2.3 Statistical Ensembles;194
8.6;2.4 Modelling Periodic Systems;195
8.7;2.5 Data Analysis;195
8.8;3 Interlayer Structure and Dynamics in Clay–Polymer Nanocomposites;195
8.9;3.1 Cation Dynamics in Clay–Polymer Composites: Lithium Ion Conduction;196
8.10;3.2 Interlayer Arrangement in Organo-Modified Clay- Composites;197
8.11;3.3 Simulation of Non-Organo-Modified Clay–Polymer Systems;201
8.12;4 Electronic Structure Studies of Reactivity in Clay– Polymer Nanocomposites;206
8.13;5 Accessing Material Properties and Phase-Diagrams of Clay– Polymer Nanocomposites Using Simulation Methods;207
8.14;6 Longer Time and Length-Scales: Understanding Formation Mechanisms of Clay– Polymer Nanocomposites Using Coarse- Grain Simulations;208
8.15;7 Future Directions for Computer Simulation;209
8.16;References;210
9;X-ray Absorption Studies of Nanocomposites;214
9.1;1 Introduction;214
9.2;2 Principles of X-ray Absorption Spectroscopy;215
9.3;2.1 EXAFS;216
9.4;2.2 XANES;217
9.5;2.3. Experiments and Data Analysis;219
9.6;3 Applications to Nanocomposite Systems;221
9.7;3.1 Nanoparticles in/on an Inorganic Matrix;222
9.8;3.2 Nanoparticles in/on a Polymer Matrix;225
9.9;3.3 Nanoparticle–Nanoparticle Composites;226
9.10;4 Conclusions;229
9.11;References;231
10;Dynamical Aspects of Nanocrystalline Ion Conductors Studied by NMR;235
10.1;1 Introduction;235
10.2;2 NMR Methods: Line Shape and Spin-Lattice Relaxation Spectroscopies 2.1 Influence of Diffusion on NMR Resonance Lines;237
10.3;2.2 Influence of Diffusion on NMR Spin-Lattice Relaxation;238
10.4;3 NMR Line Shapes of Nanocrystalline Ion Conductors – Case Studies 3.1 Single- Phase Materials;239
10.5;3.2 Two-Phase Materials;243
10.6;4 NMR Relaxation in Nanocrystalline Conductor–Insulator Composites 4.1 Heterogeneous Spin- Spin Relaxation;247
10.7;4.2 Heterogeneous Spin-Lattice Relaxation;249
10.8;5 Summary;252
10.9;References;253
11;Mössbauer Spectroscopy and New Composite Electrodes for Li- ion batteries;255
11.1;1 Introduction;255
11.2;2 The Mössbauer Spectroscopy 2.1 The Mössbauer Effect;256
11.3;2.2 The Hyperfine Interactions;257
11.4;2.3 The Experimental Setup;259
11.5;2.4 Preparation of the Samples;260
11.6;3 Characterization of Negative Electrodes;261
11.7;3.1;261
11.8;Based Electrodes;261
11.9;3.2 Tin Oxides;263
11.10;3.3 Tin Composite Oxides;266
11.11;3.4 Tin Composites;267
11.12;3.5 Tin Based Intermetallic Compounds;269
11.13;3.6 Antimony-Based Intermetallic Compounds;271
11.14;3.7;275
11.15;as Local Probe for Ti Oxides;275
11.16;4 Conclusion;277
11.17;References;278
12;Index;280



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.