Buch, Englisch, 268 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g
Recent Advances in Clustering
Buch, Englisch, 268 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g
ISBN: 978-3-642-06654-2
Verlag: Springer
Clustering is one of the most fundamental and essential data analysis techniques. Clustering can be used as an independent data mining task to discern intrinsic characteristics of data, or as a preprocessing step with the clustering results then used for classification, correlation analysis, or anomaly detection.
Kogan and his co-editors have put together recent advances in clustering large and high-dimension data. Their volume addresses new topics and methods which are central to modern data analysis, with particular emphasis on linear algebra tools, opimization methods and statistical techniques. The contributions, written by leading researchers from both academia and industry, cover theoretical basics as well as application and evaluation of algorithms, and thus provide an excellent state-of-the-art overview.
The level of detail, the breadth of coverage, and the comprehensive bibliography make this book a perfect fit for researchers and graduate students in data mining and in many other important related application areas.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
Weitere Infos & Material
The Star Clustering Algorithm for Information Organization.- A Survey of Clustering Data Mining Techniques.- Similarity-Based Text Clustering: A Comparative Study.- Clustering Very Large Data Sets with Principal Direction Divisive Partitioning.- Clustering with Entropy-Like k-Means Algorithms.- Sampling Methods for Building Initial Partitions.- TMG: A MATLAB Toolbox for Generating Term-Document Matrices from Text Collections.- Criterion Functions for Clustering on High-Dimensional Data.