Buch, Englisch, Band 234, 278 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1290 g
Reihe: Progress in Mathematics
In Honor of L. Vanhecke
Buch, Englisch, Band 234, 278 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1290 g
Reihe: Progress in Mathematics
ISBN: 978-0-8176-3850-4
Verlag: Birkhäuser Boston
* Contains research and survey articles by well known and respected mathematicians on recent developments and research trends in differential geometry and topology
* Dedicated in honor of Lieven Vanhecke, as a tribute to his many fruitful and inspiring contributions to these fields
* Papers include all necessary introductory and contextual material to appeal to non-specialists, as well as researchers and differential geometers
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Topologie Analytische Topologie
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Geometrie Elementare Geometrie: Allgemeines
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Topologie Algebraische Topologie
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
Weitere Infos & Material
Curvature of Contact Metric Manifolds.- A Case for Curvature: the Unit Tangent Bundle.- Convex Hypersurfaces in Hadamard Manifolds.- Contact Metric Geometry of the Unit Tangent Sphere Bundle.- Topological-antitopological Fusion Equations, Pluriharmonic Maps and Special Kähler Manifolds.- ?2 and ?-Deformation Theory for Holomorphic and Symplectic Manifolds.- Commutative Condition on the Second Fundamental Form of CR-submanifolds of Maximal CR-dimension of a Kähler Manifold.- The Geography of Non-Formal Manifolds.- Total Scalar Curvatures of Geodesic Spheres and of Boundaries of Geodesic Disks.- Curvature Homogeneous Pseudo-Riemannian Manifolds which are not Locally Homogeneous.- On Hermitian Geometry of Complex Surfaces.- Unit Vector Fields that are Critical Points of the Volume and of the Energy: Characterization and Examples.- On 3D-Riemannian Manifolds with Prescribed Ricci Eigenvalues.- Two Problems in Real and Complex Integral Geometry.- Notes on the Goldberg Conjecture in Dimension Four.- Curved Flats, Exterior Differential Systems, and Conservation Laws.- Symmetric Submanifolds of Riemannian Symmetric Spaces and Symmetric R-spaces.- Complex Forms of Quaternionic Symmetric Spaces.




