E-Book, Englisch, 128 Seiten
Reihe: Springer Theses
Kühne Lithium Intercalation in Bilayer Graphene Devices
1. Auflage 2018
ISBN: 978-3-030-02366-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 128 Seiten
Reihe: Springer Theses
ISBN: 978-3-030-02366-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book reports on the successful implementation of an innovative, miniaturized galvanic cell that offers unprecedented control over and access to ionic transport. It represents a milestone in fundamental studies on the diffusive transport of lithium ions between two atomically thin layers of carbon (graphene), a highly relevant aspect in electrodes for energy and mass storage in the context of batteries. Further, it is a beautiful example of how interdisciplinary work that combines expertise from two very distinct fields can significantly advance science. Machinery and tools common in the study of low-dimensional systems in condensed matter physics are combined with methods routinely employed in electrochemistry to enable truly unique and powerful experiments. The method developed here can easily be generalized and extended to other layered materials as well as other ionic species. Not only the method but also the outcome of its application to Li diffusion and intercalation in bilayer graphene is remarkable. A record chemical diffusion coefficient is demonstrated, exceeding even the diffusion of sodium chloride in water and surpassing any reported value of ion diffusion in single-phase mixed conducting materials. This finding may be indicative of the exceptional properties yet to be discovered in nanoscale derivatives of bulk insertion compounds.
Autoren/Hrsg.
Weitere Infos & Material
1;Supervisor’s Foreword;6
2;Abstract;8
3;Acknowledgements;10
4;Contents;12
5;Abbreviations and Symbols;14
6;1 Introduction;18
6.1;References;23
7;2 Electronic Properties;25
7.1;2.1 Single Layer Graphene;25
7.2;2.2 Bilayer Graphene;27
7.3;2.3 Fermi-Level Dependence of Electronic Properties;30
7.4;2.4 Electronic Properties at Finite Magnetic Field;33
7.5;2.5 Electronic Transport in the Absence of a Magnetic Field;34
7.6;2.6 Classical Magnetotransport;39
7.7;2.7 Quantum Magnetotransport;42
7.7.1;2.7.1 Shubnikov-De Haas Oscillations;44
7.7.2;2.7.2 Integer Quantum Hall Effect;47
7.7.3;2.7.3 Quantum Interferences;48
7.8;2.8 Raman Scattering;50
7.9;2.9 Summary;53
7.10;References;54
8;3 Electrochemical Device Setup and Fabrication;58
8.1;3.1 Electrochemical Lithiation of Graphitic Carbon;58
8.1.1;3.1.1 The LixC6 System;60
8.1.2;3.1.2 The Solid Electrolyte Interphase;62
8.2;3.2 Solid Polymer Electrolyte;63
8.2.1;3.2.1 Characterization of the Solid Polymer Electrolyte;64
8.2.2;3.2.2 Electrolyte Positioning;66
8.3;3.3 Bilayer Graphene Device Fabrication and Cell Assembly;68
8.4;3.4 Summary;72
8.5;References;72
9;4 Lithiation Studies;75
9.1;4.1 In situ Electronic Transport at Zero Magnetic Field;75
9.2;4.2 In situ Raman Spectroscopy;79
9.3;4.3 In situ Magnetotransport;84
9.4;4.4 Low-Temperature Magnetotransport;87
9.5;4.5 Summary;92
9.6;References;92
10;5 Conductivity Corrections from Quantum Interferences;94
10.1;5.1 Quantum Interferences in Graphene Single- and Bilayers;94
10.1.1;5.1.1 Quantum Interferences in Single Layer Graphene;96
10.1.2;5.1.2 Quantum Interferences in Bilayer Graphene;97
10.2;5.2 Weak Localization in Li-intercalated Bilayer Graphene;98
10.2.1;5.2.1 Dephasing;102
10.3;5.3 Summary;103
10.4;References;104
11;6 Intercalate Diffusion Pathways;106
11.1;6.1 Edge Decorations;106
11.2;6.2 Bilayer Graphene/Single Layer Graphene Junctions;112
11.3;6.3 Summary;114
11.4;References;114
12;7 Intercalate Diffusion Kinetics;115
12.1;7.1 Li Diffusion in Graphite;115
12.2;7.2 Measurement Setup for Intercalate Diffusion Studies;118
12.3;7.3 Numerical Solution to Fick's Second Law;120
12.4;7.4 Li Diffusion Kinetics in Bilayer Graphene;122
12.5;7.5 Summary;125
12.6;References;125
13;A Notes on the Tight-Binding Approach;127
13.1;References;128




