Buch, Englisch, 206 Seiten, Format (B × H): 156 mm x 234 mm
Theory And Practice
Buch, Englisch, 206 Seiten, Format (B × H): 156 mm x 234 mm
ISBN: 978-1-032-53549-4
Verlag: Taylor & Francis Ltd
Bioinformatics deals with computational and mathematical approaches for understanding and processing biological data. This book highlights the computational procedures and the applications evolving around the biological data, including usage of decision sciences for a variety of applications, namely text mining, "OMIC" sciences, systems biology, analyzing biological/medical images, computer-aided diagnosis/treatment of diseases, decision sciences for public health with COVID-19 data, biodiversity, smart wearables, personalized medicine, data deluge issues, and knowledge management.
Key Features:
- Presents exclusive material on decision sciences in bioinformatics
- Highlights the computational procedures and applications evolving around biological data
- Provides solution to problems in bioinformatics with decision sciences
- Addresses the research gaps in bioinformatics
- Includes case studies emphasizing societal needs
This book is aimed at researchers and graduate students in bioinformatics and data analytics.
Zielgruppe
Academic and Postgraduate
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
Weitere Infos & Material
1. Semantic Data Fabric for Automated Health Care Data Integration Using AI for Risk Prognosis and Preventive Care; 2. Design of Implantable and Wearable Fractal Antenna for COVID-19 Health Monitoring Devices; 3. Thyroid Prediction Using Hybrid CNN and LSTM Model; 4. Hybrid GAN Model with LSTM-Combined ResNet Discriminator for COVID-19 Classification in CT Images; 5. Dynamic Weighted Ensemble Framework; 6. Cataloging of Alzheimer’s Disease and Its Stages Using Machine Learning; 7. COVID-19 Fake News Detection to Combat and Mitigate Its Spread; 8. Overcoming and Solving the Challenges of Data Deluge in Healthcare; 9. Utilizing Artificial Intelligence for the Identification of Plant Species and Detection of Diseases through Deep Learning




