E-Book, Englisch, 354 Seiten
Labonne Hands-On Graph Neural Networks Using Python
1. Auflage 2024
ISBN: 978-1-80461-070-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch
E-Book, Englisch, 354 Seiten
ISBN: 978-1-80461-070-1
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
No detailed description available for "Hands-On Graph Neural Networks Using Python".
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Table of Contents - Getting Started with Graph Learning
- Graph Theory for Graph Neural Networks
- Creating Node Representations with DeepWalk
- Improving Embeddings with Biased Random Walks in Node2Vec
- Including Node Features with Vanilla Neural Networks
- Introducing Graph Convolutional Networks
- Graph Attention Networks
- Scaling Graph Neural Networks with GraphSAGE
- Defining Expressiveness for Graph Classification
- Predicting Links with Graph Neural Networks
- Generating Graphs Using Graph Neural Networks
- Learning from Heterogeneous Graphs
- Temporal Graph Neural Networks
- Explaining Graph Neural Networks
- Forecasting Traffic Using A3T-GCN
- Detecting Anomalies Using Heterogeneous Graph Neural Networks
- Building a Recommender System Using LightGCN
- Unlocking the Potential of Graph Neural Networks for Real-Word Applications




