E-Book, Englisch, 467 Seiten, Web PDF
Laird Machine Learning Proceedings 1988
1. Auflage 2014
ISBN: 978-1-4832-9769-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 467 Seiten, Web PDF
ISBN: 978-1-4832-9769-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Machine Learning Proceedings 1988
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover
;1
2;Proceedings of the Fifth International Conference on Machine Learning;2
3;Copyright Page;3
4;Table of Contents;4
5;PREFACE;8
6;Part 1: Empirical Learning;10
6.1;Chapter 1. Using a Generalization Hierarchy to Learn from Examples;10
6.1.1;Abstract;10
6.1.2;1. Introduction;10
6.1.3;2. Approach;11
6.1.4;3. The Generalization Hierarchy;12
6.1.5;4. Using the Generalization Hierarchy;13
6.1.6;5. Results;15
6.1.7;6. Future Work;15
6.1.8;7. Summary;16
6.1.9;Acknowledgements;16
6.1.10;References;16
6.2;Chapter 2. Tuning Rule-Based Systems to Their Environments;17
6.2.1;Abstract;17
6.2.2;1. The Meaning of Symbols;17
6.2.3;2. Related Work;18
6.2.4;3. The Application Domain;18
6.2.5;4. The Critic;19
6.2.6;5. Learning Mechanisms;20
6.2.7;6. Results;21
6.2.8;7. Summary;22
6.2.9;Acknowledgements;23
6.2.10;References;23
6.3;Chapter 3. ON ASKING THE RIGHT QUESTIONS;24
6.3.1;Abstract;24
6.3.2;0. Introduction;24
6.3.3;1. Picking questions to ask;24
6.3.4;2. The method of conservative selection;25
6.3.5;3· Misleading questions: the problem with tangled hierarchies;27
6.3.6;4. Asking better questions;28
6.3.7;5. Learning two-leggedness: an example of ALVIN;28
6.3.8;6. Conclusion;30
6.3.9;Acknowledgements;30
6.3.10;References;30
6.4;Chapter 4. Concept Simplification and Prediction Accuracy;31
6.4.1;Abstract;31
6.4.2;1. Concept Learning, Simplification, and Independence;31
6.4.3;2. Simplification and Accuracy Using ID3;31
6.4.4;3. Simplification and Conceptual Clustering;34
6.4.5;4. Concluding Remarks;35
6.4.6;Acknowledgements;37
6.4.7;References;37
6.5;Chapter 5. Learning Graph Models of Shape;38
6.5.1;Abstract;38
6.5.2;1. Introduction;38
6.5.3;2. Input representation: set of local features;39
6.5.4;3. Constructive learning of shape descriptors;39
6.5.5;4. Structural representation of shape;39
6.5.6;5. H-graph matching;40
6.5.7;6. Learning h-graph models;42
6.5.8;7. Results;42
6.5.9;8. Conclusion;43
6.5.10;References;44
6.6;Chapter 6. Learning Categorical Decision Criteria in Biomédical Domains;45
6.6.1;Abstract;45
6.6.2;1. Introduction;45
6.6.3;2. Criteria-based Knowledge Representation;45
6.6.4;3. The Biases of Criteria Tables;46
6.6.5;4. The CRiteria Learning System (CRLS);48
6.6.6;5. Evaluation of CRLS;51
6.6.7;6. Conclusion;54
6.6.8;Acknowledgements;54
6.6.9;References;54
6.7;Chapter 7. Conceptual Clumping of Binary Vectors with Occam's Razor;56
6.7.1;Abstract;56
6.7.2;1. Introduction;56
6.7.3;2. Cluster configuration cost;57
6.7.4;3. Finding clusters by minimizing the configuration cost;58
6.7.5;4. Concluding remarks;61
6.7.6;References;61
6.8;Chapter 8. AutoClass: A Bayesian Classification System;63
6.8.1;Abstract;63
6.8.2;1 Introduction;63
6.8.3;2 Overview of Bayesian Classification;64
6.8.4;3 The AutoClass II Program;67
6.8.5;4 Extensions to the Model;70
6.8.6;5 Results;71
6.8.7;6 Conclusion;72
6.8.8;References;72
6.9;Chapter 9. Incremental Multiple Concept Learning Using Experiments;74
6.9.1;Abstract;74
6.9.2;1. Introduction;74
6.9.3;2. Terminology;75
6.9.4;3. The primitive operations;75
6.9.5;4. Algorithm outline;78
6.9.6;5. Efficacy of the experimentation;79
6.9.7;6. Summary and Criticisms;80
6.9.8;Acknowledgments;81
6.9.9;References;81
6.10;Chapter 10. Trading Off Simplicity and Coverage in Incremental Concept Learning;82
6.10.1;Abstract;82
6.10.2;1. Introduction;82
6.10.3;2. HILLARY: An Incremental Hill-Climbing System;83
6.10.4;3 . Experimental Results;86
6.10.5;4. Conclusion;87
6.10.6;Acknowledgements;88
6.10.7;References;88
6.11;Chapter 11. Deferred Commitment in UNIMEM: Waiting to Learn;89
6.11.1;Abstract;89
6.11.2;1 Introduction;89
6.11.3;2 The basic UNIMEM concept formation algorithm;90
6.11.4;3 An order-related problem in more detail;90
6.11.5;4 Deferred commitment learning;92
6.11.6;5 Results from Deferred Commitment UNIMEM;93
6.11.7;6 Conclusion;95
6.11.8;Acknowledgments;95
6.11.9;References;95
6.12;Chapter 12. Experiments on the Costs and Benefits of Windowing in ID3;96
6.12.1;Abstract;96
6.12.2;1. Introduction;96
6.12.3;2. ID3 and Windowing;96
6.12.4;3. Experiments;97
6.12.5;4. Analysis;103
6.12.6;5. Conclusion;106
6.12.7;Acknowledgments;107
6.12.8;References;107
6.13;Chapter 13. Improved Decision Trees: A Generalized Version of ID3;109
6.13.1;Abstract;109
6.13.2;1 Introduction;109
6.13.3;2 The ID3 Approach;109
6.13.4;3 Problems with the ID3 Approach;110
6.13.5;4 An Alternate Approach;111
6.13.6;5 Evaluation Criteria and Test Results;112
6.13.7;6 Conclusions and Future Work;115
6.13.8;7 Acknowledgements;115
6.13.9;References;115
6.14;Chapter 14. ID5: An Incremental ID3;116
6.14.1;Abstract;116
6.14.2;1. Introduction;116
6.14.3;2. ID5;117
6.14.4;3. Analysis;123
6.14.5;4. Experiments;125
6.14.6;5. Conclusion;127
6.14.7;Acknowledgements;129
6.14.8;References;129
6.15;Chapter 15. Using Weighted Networks to Represent Classification Knowledge in Noisy Domains;130
6.15.1;Abstract;130
6.15.2;1. Introduction;130
6.15.3;2. IWN's Knowledge Representation;131
6.15.4;3. IWN's Algorithm for Building Networks;133
6.15.5;4. Experimental Results;137
6.15.6;5. Conclusion;142
6.15.7;Acknowledgements;142
6.15.8;References;143
7;Part 2: Genetic Learning;144
7.1;Chapter 16. An Empirical Comparison of Genetic and Decision-Tree Classifiers;144
7.1.1;Abstract;144
7.1.2;1. Introduction;144
7.1.3;2. The Learning Task;145
7.1.4;3. Results on F6;147
7.1.5;4. How Do The Systems Scale Up?;149
7.1.6;5. Conclusion;150
7.1.7;References;150
7.2;Chapter 17. Population Size In Classifier Systems;151
7.2.1;Abstract;151
7.2.2;1 Introduction;151
7.2.3;2 Learning Classifier Systems;152
7.2.4;3 Classifier System Empirical Studies;155
7.2.5;4 Population Size;156
7.2.6;5 Acknowledgements;159
7.2.7;References;159
7.3;Chapter 18. Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms;162
7.3.1;Abstract;162
7.3.2;1. Introduction;162
7.3.3;2. Background;163
7.3.4;3. Empirical Results;165
7.3.5;4. Discussion;167
7.3.6;5. Summary;169
7.3.7;References;169
7.4;Chapter 19. Classifier Systems with Hamming Weights;171
7.4.1;Abstract;171
7.4.2;1 How Classifier Systems Match;172
7.4.3;2 The Binary Response Problem;174
7.4.4;3 Matching With Hamming Weights;176
7.4.5;4 The Binary Response Problem With Level Noise;178
7.4.6;5 Binary Responses With Varying Noise Levels;180
7.4.7;6 Conclusions;182
7.5;Chapter 20. Midgard: A Genetic Approach to Adaptive Load Balancing for Distributed Systems;183
7.5.1;Abstract;183
7.5.2;Introduction;183
7.5.3;Model Specification;184
7.5.4;An Augmented Classifier Language;184
7.5.5;Midgard;186
7.5.6;Evaluation;187
7.5.7;Discussion;189
7.5.8;References;189
8;PArt 3: Connectionist Learning;190
8.1;Chapter 21. Some Interesting Properties of a Connectionist Inductive Learning System;190
8.1.1;Abstract;190
8.1.2;1. Introduction;190
8.1.3;2.0 The Architecture of the Learning System;191
8.1.4;3·0 Simulations;193
8.1.5;4.0 Summary;196
8.1.6;References;196
8.2;Chapter 22. Competitive Reinforcement Learning;197
8.2.1;Abstract;197
8.2.2;1 Introduction;197
8.2.3;2 The Competitive Reinforcement Algorithm;199
8.2.4;3 Demonstration;202
8.2.5;4 Informal Analysis;205
8.2.6;5 Discussion;206
8.2.7;6 Acknowledgements;207
8.2.8;References;207
8.3;Chapter 23. Connectionist Learning of Expert Backgammon Evaluations;209
8.3.1;ABSTRACT;209
8.3.2;1. Introduction;209
8.3.3;2. Network and Database Set-up;210
8.3.4;3. Training and Testing Procedures;212
8.3.5;4. Results of Training;213
8.3.6;5. Discussion;214
8.3.7;Acknowledgements;215
8.3.8;References;215
8.4;Chapter 24. Building and Using Mental Models in a Sensory-Motor Domain: A Connectionist Approach;216
8.4.1;1. Introduction;216
8.4.2;2. A Robot Called MURPHY;217
8.4.3;3. How MURPHY Learns;218
8.4.4;4. What MURPHY Does;220
8.4.5;5. Discussion and Future Work;221
8.4.6;6. Acknowledgements;222
8.4.7;References;222
9;Part 4: Explanation-Based Learning;223
9.1;Chapter 25. Reasoning about Operationality for Explanation-Based Learning;223
9.1.1;Abstract;223
9.1.2;1. Introduction;223
9.1.3;2. Reasoning about Operationality;224
9.1.4;3. Generalizing Operationality;224
9.1.5;4. ROE;225
9.1.6;5. Related Work;226
9.1.7;6. Conclusion;228
9.1.8;Acknowledgements;228
9.1.9;Appendix I. PROLOG Implementation of ROE;228
9.1.10;References;229
9.2;Chapter 26. Boundaries of Operationality;230
9.2.1;Abstract;230
9.2.2;1. Introduction;230
9.2.3;2. Utility;231
9.2.4;3. The Boundary of Operationality;232
9.2.5;4. EBL and Searching Through the Generalized Concept Partial Order;235
9.2.6;5. Locality;236
9.2.7;6. Non-Locality with a Boundary of Operationally;237
9.2.8;7. Degrees of Operationality;239
9.2.9;8. Discussion and Further Work;241
9.2.10;Acknowledgements;242
9.2.11;References;242
9.3;Chapter 27. On the Tractability of Learning from Incomplete Theories;244
9.3.1;Abstract;244
9.3.2;1. Introduction;244
9.3.3;2. Determinations: A Form of Incomplete Theory;245
9.3.4;3. Overview of the Formal Learning Framework;246
9.3.5;4. Learnability Results;247
9.3.6;5. Conclusions;250
9.3.7;6. Acknowledgements;250
9.3.8;7. References;250
9.4;Chapter 28. ACTIVE EXPLANATION REDUCTION: An Approach to the Multiple Explanations Problem;251
9.4.1;Abstract;251
9.4.2;1. Introduction;251
9.4.3;2. Active Explanation Reduction;253
9.4.4;3. Representation of the Domain Theories;256
9.4.5;4. Multiple Explanations from Intractable Theories;257
9.4.6;5. Evaluation of the Active Explanation Reduction Technique;261
9.4.7;6. Related Work;262
9.4.8;References;264
9.5;Chapter 29. Generalizing Number and Learning from Multiple Examples in Explanation Based Learning;265
9.5.1;Abstract;265
9.5.2;1 Introduction;265
9.5.3;2 Problem Description;266
9.5.4;3 ADEPT;267
9.5.5;4 Combining Examples;274
9.5.6;5 Results;275
9.5.7;6 Conclusions;276
9.5.8;Acknowledgements;277
9.5.9;References;277
9.6;Chapter 30. Generalizing the Order of Operators in Macro-Operators;279
9.6.1;Abstract;279
9.6.2;1. Introduction;279
9.6.3;2. An Example;280
9.6.4;3. Overview of EGGS;280
9.6.5;4. Generating Partially-Ordered Macro-Operators;281
9.6.6;5. Relation to Nonlinear Planning;287
9.6.7;6. Another Example;288
9.6.8;7. An Example Requiring Structural Generalization;289
9.6.9;8. Conclusions and Problems for Future Research;290
9.6.10;Acknowledgements;291
9.6.11;References;291
9.7;Chapter 31.
Using Experience-Based Learning in Game Playing;293
9.7.1;ABSTRACT;293
9.7.2;1. INTRODUCTION;293
9.7.3;2. SOME GENERAL DESIGN ISSUES;293
9.7.4;3. THE STRUCTURE AND CONTENT OF AN EXPERIENCE BASE;294
9.7.5;4. GINA: A CASE STUDY USING OTHELLO;295
9.7.6;5. Future Research;299
9.7.7;REFERENCES;299
10;Part 5: Integrated Explanation-Based and Empirical Learning;300
10.1;Chapter 32. Integrated Learning with Incorrect and Incomplete Theories;300
10.1.1;Abstract;300
10.1.2;1. Introduction;300
10.1.3;2. Explanation-based learning with an incorrect theory;301
10.1.4;3. Learning with an incomplete theory;304
10.1.5;4. Conclusion;306
10.1.6;Acknowledgments;306
10.1.7;References;306
10.2;Chapter 33. An Approach Based on Integrated Learning to Generating Stories from Stories;307
10.2.1;Abstract;307
10.2.2;1. Introduction;307
10.2.3;2. Integrating EBL and SBL;307
10.2.4;3. The learning problem of IVAN;308
10.2.5;4. EBL step;308
10.2.6;5. Generalization rules;310
10.2.7;6. SBL step;311
10.2.8;7. Evaluation;312
10.2.9;8. Conclusions and directions;313
10.2.10;Acknowledgements;313
10.2.11;References;313
10.3;Chapter 34. A KNOWLEDGE INTENSIVE APPROACH TO CONCEPT INDUCTION;314
10.3.1;Abstract;314
10.3.2;1 Introduction;314
10.3.3;2 A Framework for Inducing Concept Descriptions;315
10.3.4;3 Using Deduction to Drive Induction;318
10.3.5;4 An Example;321
10.3.6;5 Conclusions;324
10.3.7;References;325
11;Part 6: Case-Based Learning;327
11.1;Chapter 35. Learning to Program by Examining and Modifying Cases;327
11.1.1;Abstract;327
11.1.2;1 Introduction;327
11.1.3;2 The General Approach;328
11.1.4;3 The System Architecture;329
11.1.5;4 An Example;331
11.1.6;5 Further Work;332
11.1.7;6 Conclusions;332
11.1.8;Acknowledgements;333
11.1.9;References;333
12;Part 7: Machine Discovery;334
12.1;Chapter 36. Theory Discovery and the Hypothesis Language;334
12.1.1;Abstract;334
12.1.2;1. Introduction;334
12.1.3;2. Two Senses of Success;335
12.1.4;3. A Mathematical Framework;335
12.1.5;4. Theorems;340
12.1.6;5. Conclusion;346
12.1.7;References;346
12.2;Chapter 37. Machine Invention of First-order Predicates by Inverting Resolution;348
12.2.1;Abstract;348
12.2.2;1. Introduction;348
12.2.3;2. CIGOL sessions;349
12.2.4;3. Preliminaries;351
12.2.5;4. Inverting resolution;353
12.2.6;5. CIGOL;359
12.2.7;6. Discussion;360
12.2.8;Acknowledgements;361
12.2.9;References;361
12.3;Chapter 38. The Interdependences of Theory Formation, Revision, and Experimentation;362
12.3.1;Abstract;362
12.3.2;1. Introduction;362
12.3.3;2. An Integrated Model of Theory Development;364
12.3.4;3. An Additional Example: Understanding Osmosis;372
12.3.5;4. Evidence from the History of Science and Psychology;373
12.3.6;5. Related Work;373
12.3.7;6. Discussion;374
12.3.8;7. Acknowledgements;374
12.3.9;8. References;374
12.4;Chapter 39. A Hill-Climbing Approach to Machine Discovery;376
12.4.1;Abstract;376
12.4.2;1. Introduction;376
12.4.3;2. The REVOLVER System;376
12.4.4;3. Evaluating the System;378
12.4.5;4. Discussion;381
12.4.6;Acknowledgements;382
12.4.7;References;382
12.5;Chapter 40. REDUCTION: A PRACTICAL MECHANISM OF SEARCHING FOR REGULARITY IN DATA;383
12.5.1;Abstract;383
12.5.2;1. Introduction;383
12.5.3;2. Outlining Reduction;383
12.5.4;3. A Generate and Test Search for a Primitive Function;385
12.5.5;4. Implementing Reduction;387
12.5.6;5. Concluding Remarks;388
12.5.7;Acknowledgements;389
12.5.8;References;389
13;Part 8: Formal Models of Concept Learning;390
13.1;Chapter 41. Extending the Valiant Learning Model;390
13.1.1;Abstract;390
13.1.2;1 Introduction;390
13.1.3;2 The Valiant Model;391
13.1.4;3 Experimentation;392
13.1.5;4 Heuristic Learnability and Density;396
13.1.6;5 Conclusion;402
13.1.7;Acknowledgements;402
13.1.8;References;402
13.2;Chapter 42. LEARNING SYSTEMS OF FIRST-ORDER RULES;404
13.2.1;Abstract;404
13.2.2;1 Introduction;404
13.2.3;2 The Setting;406
13.2.4;3 The Algorithm;407
13.2.5;4 Pragmatic Issues;409
13.2.6;5 Conclusion;409
13.2.7;References;410
13.3;Chapter 43. Two New Frameworks for Learning;411
13.3.1;Abstract;411
13.3.2;1. Introduction;411
13.3.3;2. Preliminaries;412
13.3.4;3. Learning from Examples and Background Information;415
13.3.5;4. Learning as Improvement in Computational Efficiency;418
13.3.6;5. Implementation;422
13.3.7;6. Conclusion;423
13.3.8;7. Acknowledgements;423
13.3.9;8. References;423
13.4;Chapter 44. Hypothesis Filtering: A Practical Approach to Reliable Learning;425
13.4.1;Abstract;425
13.4.2;1 Introduction;425
13.4.3;2 Two Kinds of Justification;426
13.4.4;3 Reliable Learning;427
13.4.5;4 Statistical Foundations;429
13.4.6;5 The Hypothesis Filtering Method;431
13.4.7;6 Concept Learning and Hypothesis Filtering;433
13.4.8;7 Predictive Clustering and Hypothesis Filtering;434
13.4.9;8 Guaranteed Learning;435
13.4.10;9 Conclusion;437
13.4.11;Acknowledgments;437
13.4.12;References;438
14;Part 9: Experimental Results in Machine Learning;439
14.1;Chapter 45. Diffy-S: Learning Robot Operator Schemata from Examples;439
14.1.1;Abstract;439
14.1.2;1· Introduction;439
14.1.3;2. Learning Task;439
14.1.4;3. Related Work;440
14.1.5;4. Representation;441
14.1.6;5. Performance Tasks;442
14.1.7;6. Learning Algorithm;442
14.1.8;7· Evaluation;443
14.1.9;8. Future Research;444
14.1.10;9. Conclusion;444
14.1.11;Acknowledgments;445
14.1.12;References;445
14.2;Chapter 46. Experimental Results from an Evaluation of Algorithms that Learn to Control Dynamic Systems;446
14.2.1;Abstract;446
14.2.2;1. Introduction;446
14.2.3;2. The Problem Domain;447
14.2.4;3. BOXES;447
14.2.5;4. The AHC Algorithm;448
14.2.6;5. CART;449
14.2.7;6. Combining Reinforcement Learning with Induction;449
14.2.8;7. Comparison of Methods;451
14.2.9;Acknowledgements;452
14.2.10;References;452
14.3;Chapter 47. Utilizing Experience for Improving the Tactical Manager;453
14.3.1;Abstract;453
14.3.2;The Learning Task;453
14.3.3;The Performance Element: Tactical Manager and Simulation;454
14.3.4;Learning Part 1: Accumulating Experience;455
14.3.5;Learning Part 2: Utilizing Experience;457
14.3.6;Complexity Problems;458
14.3.7;Relation to Earlier Research;459
14.3.8;Acknowledgements;459
14.3.9;References;459
15;Part 10: Computational Impact of Learning and Forgetting;460
15.1;Chapter 48. Some Chunks Are Expensive;460
15.1.1;Abstract;460
15.1.2;1. Introduction;460
15.1.3;2. Expensive Chunks Exist;461
15.1.4;3. Soar;462
15.1.5;4. The Matcher;462
15.1.6;5. Expensive Chunks: The three contributing factors;463
15.1.7;6. Discussion;465
15.1.8;Acknowledgements;467
15.1.9;References;467
15.2;Chapter 49. The Role of Forgetting in Learning;468
15.2.1;Abstract;468
15.2.2;1. Introduction;468
15.2.3;2. The Economics of Learning;468
15.2.4;3. Learning to Search Graphs;470
15.2.5;4. Conclusions;473
15.2.6;References;474
16;INDEX;476




