Lang | Fundamentals of Diophantine Geometry | Buch | 978-0-387-90837-3 | www.sack.de

Buch, Englisch, 370 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1600 g

Lang

Fundamentals of Diophantine Geometry


1983
ISBN: 978-0-387-90837-3
Verlag: Springer

Buch, Englisch, 370 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1600 g

ISBN: 978-0-387-90837-3
Verlag: Springer


Diophantine problems represent some of the strongest aesthetic attractions to algebraic geometry. They consist in giving criteria for the existence of solutions of algebraic equations in rings and fields, and eventually for the number of such solutions. The fundamental ring of interest is the ring of ordinary integers Z, and the fundamental field of interest is the field Q of rational numbers. One discovers rapidly that to have all the technical freedom needed in handling general problems, one must consider rings and fields of finite type over the integers and rationals. Furthermore, one is led to consider also finite fields, p-adic fields (including the real and complex numbers) as representing a localization of the problems under consideration. We shall deal with global problems, all of which will be of a qualitative nature. On the one hand we have curves defined over say the rational numbers. Ifthe curve is affine one may ask for its points in Z, and thanks to Siegel, one can classify all curves which have infinitely many integral points. This problem is treated in Chapter VII. One may ask also for those which have infinitely many rational points, and for this, there is only Mordell's conjecture that if the genus is:; 2, then there is only a finite number of rational points.

Lang Fundamentals of Diophantine Geometry jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1 Absolute Values.- 2 Proper Sets of Absolute Values. Divisors and Units.- 3 Heights.- 4 Geometric Properties of Heights.- 5 Heights on Abelian Varieties.- 6 The Mordell-Weil Theorem.- 7 The Thue-Siegel-Roth Theorem.- 8 Siegel’s Theorem and Integral Points.- 9 Hilbert’s Irreducibility Theorem.- 10 Weil Functions and Néron Divisors.- 11 Néron Functions on Abelian Varieties.- 12 Algebraic Families of Néron Functions.- 13 Néron Functions Over the Complex Numbers.- Review of S. Lang’s Diophantine Geometry, by L. J. Mordell.- Review of L. J. Mordell’s Diophantine Equations, by S. Lang.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.