Laurent / Le Mehaute / Schumaker | Wavelets, Images, and Surface Fitting | Buch | 978-1-56881-040-9 | www.sack.de

Buch, Englisch, 544 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 929 g

Laurent / Le Mehaute / Schumaker

Wavelets, Images, and Surface Fitting


1. Auflage 1994
ISBN: 978-1-56881-040-9
Verlag: Taylor & Francis

Buch, Englisch, 544 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 929 g

ISBN: 978-1-56881-040-9
Verlag: Taylor & Francis


This volume documents the results and presentations relating to the use of wavelet theory and other methods in surface fitting and image reconstruction of the Second International Conference on Curves and Surfaces, held in Chamonix in 1993. The papers represent directions for future research and development in many areas of application.

Laurent / Le Mehaute / Schumaker Wavelets, Images, and Surface Fitting jetzt bestellen!

Weitere Infos & Material


Preface, Contributors, A Vector Spline Quasi-Interpolation, Implementation on a Shared Memory Parallel Computer of Algorithms for Approximating Data on a Family of Parallel Lines, Wavelet Methods for Smoothing Noisy Data, Quasi-interpolants and (quasi-) Wavelets P(D) Manifold, Fast DCT-Algorithms, Interpolating Wavelets, and Hierarchical Bases, Spline Curves and Surfaces with Tension, Irregularity Detection from Noisy Data with Wavelets, Natural Neighbor Interpolation on the Sphere, Error Estimates for Periodic Interpolation by Translates, An Energy-based Paradigm for Multimodal Images Fusion, Radial Basis Functions: Lp Approximation Orders with Scattered Centres, 3D Curve Reconstruction from Degraded Projections, A Study of Compactly Supported Scaling Functions and Wavelets, Multiresolution Analysis and Wavelets on Locally Compact Abelian Groups, Some Remarks on Multiscale Transformations, Stability, and Biorthogonality, Fractal Interpolation Functions for a Class of Finite Elements, Adaptive Wavelet Bases for Image Compression, A Quasi-Interpolant Box-Spline Formulation for Image Compression and Reconstruction, The Subdivision Experience, Banded Matrices with Banded Inverses III: p-Slanted Matrices, Invariant Approximation of Star-Shaped Form for Medical Applications, Surface Construction Based on Variational Principles, Direct Methods for Constructing Positive Spline Interpolants, Conditionally Lower Riesz Bounds for Scattered Data Interpolation, The ‘Face Lift’ Algorithm, Some Generic Properties of the Set of Cross-Sections and the Set of Orthogonal Projections of a Smooth Surface, Splines Constructed by Pieces of Polyharmonic Functions, On the Fast Evaluation of Integrals of Refinable Functions, Rational C[sup(k+1)] Finite Elements in R[sup(2)], Convolution Kernels for Approximation by Radial Basis Functions, Using Radial Functions on Compact Domains, Smoothing Noisy Data by Kriging with Nugget Effects, Nonnegative Interpolation by Biquadratic Splines on Refined Rectangular Grids, Spline Wavelets with Higher Defect, Regularity Analysis of Non-uniform Data, A Duality Principle for Trigonometric Wavelets, Decomposition and Reconstruction Algorithms for Bivariate Spline Wavelets on the Unit Square, Some Criteria to Evaluate the Quality of a Quasi-Interpolant, Holder Regularity of Subdivision Schemes and Wavelets, Hermite and Lagrange Interpolation by Quadratic Splines on Non-uniform Criss-Cross Triangulations, Partial Differential Equation Techniques for Surface Determination, Approximation of Polynomials by Radial Basis Functions, Modeling of Geological Surfaces Using Finite Elements, Orthogonal Periodic Spline Wavelets, Approximation of Parametric Surfaces with Discontinuities by Discrete Smoothing Dm-splines, Wavelet Analysis of Refinable Functions, Interpolation of an Arbitrary Rectangular Mesh with Local Control and Prescribed Continuity, Constrained Surface Fitting Using Powell-Sabin Splines, B-spline Patches for Surface Reconstruction in Computer Vision


Pierre-Jean Laurent, Alain Le Mehaute, Larry Schumaker



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.