E-Book, Englisch, 949 Seiten
Laznicka Giant Metallic Deposits
2. Auflage 2010
ISBN: 978-3-642-12405-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Future Sources of Industrial Metals
E-Book, Englisch, 949 Seiten
ISBN: 978-3-642-12405-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Metals in the earth's crust are very unevenly distributed and, traditionally, a small number of ore deposits, districts or countries have dominated the world supply and have influenced commodity prices. The importance of exceptionally large, or rich, deposits has greatly increased in the age of globalization when a small number of international corporations dominate the metals market, based on few very large ore deposits, practically anywhere in the world. Search for giant orebodies thus drives the exploration industry: not only the in-house teams of large internationals, but also hundreds of junior companies hoping to sell their significant discoveries to the 'big boys'. Geological characteristics of giant metallic deposits and their setting and the politico-economic constraints of access to and exploitation in prospective areas have been a 'hot topic' in the past fifteen years, but the knowledge generated and published has been one-sided, scattered and fragmented. This is the first comprehensive book on the subject that provides body of solid facts rather than rapidly changing theories, written by author of the Empirical Metallogeny book series and founder of the Data Metallogenica visual knowledge system on mineral deposits of the world, who has had an almost 40 years long international academic and industrial experience. The book will provide abundant material for comparative research in metallogeny, practical information for the explorationists as to where to look for the 'elephants', and some inspiration for commodity investors.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;4
2;Contents;6
3;Context, explanations, abbreviations, units;12
3.1;Book Context and Background;12
3.2;Geological ages;14
3.3;Miscellaneous abbreviations;14
3.4;Tonnage units and abbreviations;15
3.5;Pure metals converted from various compounds;15
4;1 Civilization based on metals;16
4.1;1.1. Past and present sources ofindustrial metals;16
4.1.1;1.1.1. Introduction;16
4.1.2;1.1.2. History of metal supplies;16
4.1.3;1.1.3. Present metals supplies;19
4.2;1.2. Metal prices;21
4.3;1.3. Future metal supplies;24
4.3.1;1.3.1. How much metals will be needed?;25
4.3.2;1.3.2. Reducing demand for “new” metals;30
4.3.3;1.3.3. Où sont les métaux por avenir?Future ore deposits, conventional andnon-conventional;33
4.4;1.4. Conclusion: future supplies ofmetals and giant deposits;40
5;2 Data on metallic deposits and magnitudecategories: the giant and world class deposits;48
5.1;2.1. Data sources and databases;48
5.2;2.2. Giant and world class ore deposits:definition and characteristics;51
5.3;2.3. Dimension, complexity andhierarchy of metallic deposits, district;57
5.4;2.4. The share of “giant” metalaccumulations in global metal supplies;60
6;3 From trace metals to giant deposits;70
6.1;3.1. Introduction;70
6.2;3.2. Extraterrestrial metals and oresresulting from meteorite impact;71
6.3;3.3. Lithospheric evolution and oreformation related to geochemicalbackgrounds;74
7;4 Geological divisions that contain ore giants:introduction and the role of mantle;80
7.1;4.1. Earth’s geodynamics, platetectonics, and metallogenesis;81
7.2;4.2. The Earth’s mantle and its role interrestrial (crustal) lithogenesis andmetallogenesis;82
7.3;4.3. Organization of chapters in thedescriptive Part II of this book;87
8;5 Oceans and young island arc systems;92
8.1;5.1. Oceanic crust, ocean floor;93
8.2;5.2. Intraplate volcanic islands,seamounts and plateaus on oceaniccrust;98
8.3;5.3. Sea water as a source of metals;98
8.4;5.4. Ocean floor sediments;99
8.5;5.5. Active to “young” (pre-orogenic)convergent plate margins on sea floorand in islands;101
8.6;5.6 Island arc metallogeny and giantdeposits;102
8.7;5.7. Island arc-trench subenvironmentsand ore formation;105
8.8;5.8. Magmatic (volcano-plutonic)systems in island arcs;107
8.9;5.9 Back-arcs (marginal seas), interarcs,and other extensional basins;114
8.10;5.10. Magnetite beach sands;118
9;6 Andean-type convergent continental margins(upper volcanic-sedimentary level);120
9.1;6.1 Introduction;120
9.2;6.2. Metals fluxing and metallogenesis;124
9.2.1;6.2.1. Ores in predominantly continentalsediments;124
9.2.2;6.2.2. Ores in contemporaneous and“young” subaerial volcanics;129
9.2.3;6.2.3. Ores in predominantly andesiticancient convergent continental margins;135
9.2.4;6.2.4. “Red beds” in Andean margins;137
9.2.5;6.2.5. Ores in Andean margin rhyolites;138
9.3;6.3. Geothermal systems on land and in theshallow subsurface;140
9.3.1;6.3.1. Hot spring deposits;142
9.4;6.4. High-sulfidation epithermal ores;143
9.4.1;6.4.1. Low-grade (“bulk”), low-sulfide Au–Agdeposits;144
9.4.2;6.4.2. Transition to sulfides-rich highsulfidationAu–Ag systems;147
9.4.3;6.4.3. Diatreme-dome complexes withenargite-gold centers surrounded by pyriteand Zn–Pb–Ag carbonate replacements;149
9.4.4;6.4.4. Combined high sulfidation / porphyryCu–Au–Ag systems;151
9.5;6.5. Low sulfidation (LS) deposits;156
9.5.1;6.5.1. Au-dominated low-sulfidation ores;158
9.5.2;6.5.2. Au–(Te)>Ag alkaline association;164
9.5.3;6.5.3. Bonanza Ag>>Au;166
9.5.4;6.5.4. Epithermal to mesothermal Pb, Zn,(Cu), Au, Ag deposits;169
9.5.5;6.5.5. Other epithermal deposits: Mo, W, Bi,U, As, Sb, Te, Hg; Mn172
9.5.6;6.5.6. Low sulfidation deposits as part of asystem: other related mineralization;174
9.5.7;6.5.7. “Bolivian-type” porphyry Sn-bonanzaAg composite association;175
10;7 Cordilleran granitoids in convergent continentalmargins (lower, plutonic levels);180
10.1;7.1. Introduction;180
10.2;7.2. Metallogeny;181
10.3;7.3. Porphyry deposits: Cu, Cu–Mo, Au;184
10.3.1;7.3.1. General and calc-alkaline;184
10.3.2;7.3.2. Breccias in porphyry systems;189
10.3.3;7.3.3. Evolution of magmatic-hydrothermal“porphyry” systems, alterations, ores;193
10.3.4;7.3.4. Alkaline (diorite model) porphyry Cu–(Au) deposits;196
10.3.5;7.3.5. Combined porphyry Cu (Mo, Au) andskarn deposits;203
10.3.6;7.3.6. Precambrian porphyry-style Cu, Mo,Au deposits;208
10.3.7;7.3.7. Supergene modification of porphyrydeposits;208
10.3.8;7.3.9. Porphyry Cu-(Mo, Au) deposits:global distribution and description;217
10.4;7.4. Stockwork molybdenum deposits;238
10.4.1;7.4.1. Differentiated monzogranite Mo suite;240
10.4.2;7.4.2. High-silica rhyolite suite (Climax type);242
10.4.3;7.4.4. Stockwork Mo in the alkaline “rift”association;244
10.4.4;7.4.5. Mo-dominated skarn deposits;244
10.5;7.5. Stockwork, vein and skarn Mo-W-Bi;247
10.6;7.6. Scheelite skarn deposits;249
10.7;7.7. Cordilleran Pb–Zn–Ag (Cu) deposits;252
10.7.1;7.7.1. High-temperature Zn, Pb, Agreplacements in carbonates;252
10.7.2;7.7.2. Mesothermal Pb–Zn–Ag (Sb) veins;258
10.8;7.8. Hydrothermal Fe, Mn, Sb, Sn, B, U,Th deposits in, and associated with,Cordilleran granitoids;264
10.9;7.9. Carlin-type micron-size Au (As, Hg,Sb, Tl) deposits;266
10.9.1;7.9.1. “Invisible gold” in the Great Basin;268
10.9.2;7.9.2. “Carlin-type” gold outside the U.S.A.;272
11;8 Intracratonic (intraplate) orogens, granites,hydrothermal deposits;274
11.1;8.1. Introduction;274
11.1.1;8.1.1. Granitoids in orogenic setting;276
11.2;8.2. Massif anorthosite association: Fe–Ti–V and Ni–Cu deposits;282
11.3;8.3. Ores closely associated withgranites & pegmatites;285
11.3.1;8.3.1. Rare metals pegmatites;285
11.3.2;8.3.2. Zr, Nb, Ta, Y, REE, Th, Be associationin peralkaline granites;290
11.3.3;8.3.3. Uraniferous leucogranites, aplites,pegmatites;292
11.3.4;8.3.4. Granite-related wolframite deposits(Jiangxi-type);293
11.3.5;8.3.5. Granite-related tin deposits;295
11.3.6;8.3.6. Cassiterite regoliths and placers;301
11.3.7;8.3.7. Multi-metal zoned Sn, Mo, W, Bi, Be,Pb, Zn skarn-greisen-vein systems;303
11.3.8;8.3.8. Hydrothermal U deposits;308
11.4;8.4. Mesothermal gold;312
11.5;8.4.1. Intrusion (“granite”)-related Au veins,stockworks, disseminations;315
11.6;8.4.2. Gold skarns;316
11.7;8.4.3. Transition of granite-related to(syn)orogenic Au deposits;317
11.8;8.5. Dominantly orogenic metamorphichydrothermalAu deposits;323
11.8.1;8.5.1. (Syn)orogenic gold veins andstockworks;323
11.9;8.6. Gold placers;331
11.10;8.7. (Syn)orogenic Sb & Hg deposits;334
11.10.1;8.7.1. Antimony deposits;334
11.10.2;8.7.2. Mercury deposits;339
11.11;8.8. Pb, Zn, Ag veins and replacements;343
12;9 Volcano-sedimentary orogens;352
12.1;9.1. Introduction;352
12.1.1;9.1.1. Growth and evolution of compositevolcano-sedimentary orogens exemplifiedby the Canadian Cordillera;355
12.2;9.2. Ophiolite allochthons, melangesand alpine serpentinites;357
12.3;9.3. Oceanic successions;363
12.4;9.4. Mafic and bimodal marine volcanicsedimentarysuccessions;364
12.4.1;9.4.1. VMS (volcanic-associated massivesulfide) deposits;365
12.4.2;9.4.2. Sedimentary rocks-hosted Fe, Cu, Zn,Pb ores;377
12.4.3;9.4.3. Au–Ag deposits;377
12.5;9.5. Differentiated mafic-ultramaficintrusions (Alaska-Urals type);378
12.6;9.6. Calc-alkaline and shoshoniticvolcanic-sedimentary successions;380
12.7;9.7. Miscellaneous metallic ores;385
13;10 Precambrian greenstone-granite terrains;386
13.1;10.1. Introduction;386
13.1.1;10.1.1. Abitibi Subprovince (greenstonebelt), Canadian Shield;387
13.2;10.2. Komatiitic association and Ni ores;391
13.3;10.3. Early Proterozoic paleo-ophiolites;398
13.4;10.4. Mafic and bimodal greenstonesequences: Fe ores in banded ironformations;399
13.5;10.5 VMS deposits in bimodal andsequentially differentiated volcanicsedimentaryassociation;402
13.6;10.6. Granitoid plutons in greenstonesetting and older Precambrian“porphyry” deposits;410
13.7;10.7. (Syn)orogenic hydrothermal Au-(As, Sb, Cu) in greenstone terrains;412
13.7.1;10.7.1. Introduction to orogenic deposits;412
13.8;10.8. Synorogenic Cu (U, Ni, Au, Ag)deposits overprinting greenstone belts;431
13.9;10.9. Ores in late orogenic sedimentaryrocks in greenstone belts;432
14;11 Proterozoic-style intracratonic orogens andbasins: extension, sedimentation, magmatism;436
14.1;11.1. Introduction;436
14.2;11.2. Metallogeny and giant deposits;439
14.3;11.3. Sedex concepts applied toProterozoic Pb–Zn–Ag deposits;444
14.4;11.4. Strata controlled Proterozoiccopper deposits in (meta)sedimentaryrocks;448
14.5;11.5. Au and U in quartz-richconglomerates (Witwatersrand-type);456
14.6;11.6. Fe in Superior-type banded ironformations (BIF);465
14.7;11.7. Fe (BIF) and Mn in diamictites;477
14.8;11.8. Bedded and residual Mn deposits;480
14.9;11.9. Miscellaneous, complex Zn, Pb,Cu, Co, V, Ag, Ge, Ga, (U) deposits inProterozoic sedimentary rocks;483
14.10;11.10. Oxidic (nonsulfide) Zn and Pbdeposits;486
14.11;11.11. Unconformity uranium deposits;488
14.12;11.12. Hydrothermal Fe oxide depositswith Cu, or U, or Au, or REE: the IOCGgroup that includes Olympic Dam;491
15;12 Rifts, paleorifts, rifted margins, anorogenicand alkaline magmatism;504
15.1;12.1. Introduction;504
15.2;12.2. Young rifts, hydrothermal activity;507
15.3;12.3. Mantle plumes, continentalbreakup, rifted continental margins;509
15.3.1;12.3.1. Mantle plumes and hot spots;509
15.3.2;12.3.2. Rifted (Atlantic-type) continentalmargins;509
15.3.3;12.3.3. Intraplate and rift margin mafic tobimodal magmatism;511
15.4;12.4. Plateau (flood) basalts;513
15.4.1;12.4.1. Ni–Cu sulfide deposits in intrusionsassociated with plateau basalt provinces;513
15.4.2;12.4.2. Lateritic bauxite on basalt;518
15.5;12.5. Diabase, gabbro, rare peridotitedikes and sills;519
15.6;12.6. Bushveld-style layered intrusions;522
15.7;12.7. Sudbury complex Ni, Cu, Co, PGE,Ontario: an enigma related to meteoriteimpact;535
15.8;12.8. Alkaline magmatic association;541
15.8.1;12.8.1. Introduction;541
15.8.2;12.8.2. Alkaline metallogeny and giantdeposits;543
15.8.3;12.8.3. Alkaline volcanic and subvolcaniccenters;545
15.8.4;12.8.4. Nepheline syenite-dominatedintrusions;545
15.8.5;12.8.5. Alkaline pyroxene-nepheline seriesand alkaline ultramafics;549
15.9;12.9. Carbonatites;553
16;13 Sedimentary associations and regolith;562
16.1;13.1. Introduction;562
16.2;13.2. Marine clastics;564
16.2.1;13.2.1. Ore formation;565
16.2.2;13.2.2. Detrital (clastic) ores: coastal andshelf heavy mineral sands and paleoplacersof Fe, Ti, Zr, REE, Th;567
16.3;13.3. Combined clastic and chemicalbedded sedimentary deposits;570
16.3.1;13.3.1. Particulate (oolitic) ironstones;570
16.3.2;13.3.2. Bedded Mn deposits (Phanerozoic;573
16.3.3;13.3.3. Mineralized carbonaceous pelites(“black shales”);576
16.3.4;13.3.4. Phosphorite-black shale association;581
16.3.5;13.3.5. Cu, Ag (Pb, Zn, Au, PGE) associatedwith reduced marine units above “redbeds”(Kupferschiefer or copper shale-type);584
16.3.6;13.3.6. Sedex Pb-Zn-Ag deposits in basinalshale near carbonate platform;588
16.4;13.4. Marine carbonates and evaporites;594
16.4.1;13.4.1. Introduction;594
16.4.2;13.4.2. Warm-current (Florida-type)phosphorites and their uranium enrichment;598
16.4.3;13.4.3. Bedded Mn deposits in “basinal”(reduced) carbonates;599
16.4.4;13.4.4. Low-temperature Zn–Pb deposits incarbonates;600
16.4.5;13.4.5. Discordant (vein) Zn–Pb orebodiesof “MVT affiliation”;609
16.4.6;13.4.6. Stratabound cinnabar deposits incarbonates;610
16.4.7;13.4.7. Metallic ores in karst on carbonates;611
16.5;13.5. Marine evaporites and ores;612
16.6;13.6. Hydrocarbons as a source ofmetals;614
16.7;13.7. Ores in regolith and continentalsediments;615
16.7.1;13.7.1. Introduction;615
16.7.2;13.7.2. Glaciation and ores in glaciogenic(cryogenic) materials and structures,related talus and glaciofluvial deposits;616
16.7.3;13.7.3. Humid tropical regoliths;617
16.7.4;13.7.4. Supergene Cu ores andleaching/reprecipitation profiles;624
16.7.5;13.7.5. Paleo-regoliths, paleosols and basalsequences at unconformities;627
16.7.6;13.7.6. Humid alluvial environments: placerdeposits;631
16.7.7;13.7.7. Lakes and lacustrine sequences;632
16.7.8;13.7.8. Arid regoliths and sediments;634
16.7.9;13.7.9. Sandstone-dominated continentalsequences: “grey” and “red”;637
16.7.10;13.7.10. Metals recoverable from coal;638
16.7.11;13.7.11. Infiltrations from meteoric waters:“sandstone-U (V)” deposits;639
16.7.12;13.7.12. Cu-sandstone deposits in red andgrey (varicolored) beds;645
16.7.13;13.7.13. Sandstone-Pb (Zn) deposits;646
16.8;13.8. Anthropogenic metal sources;648
17;14 Higher-grade metamorphic associations;652
17.1;14.1. Introduction;652
17.2;14.2. Metallogeny;654
17.3;14.3. High-grade associations and ores;656
17.4;14.4. High-grade metamorphosedbanded iron formations (BIF);659
17.5;14.5. Pb–Zn–Ag sulfide orebodies ingneiss >>marble, Ca–Mg–Mn silicates:(Broken Hill-type);660
17.6;14.6. Zn, Pb sulfides and Zn–Mn oxidesin marble and Ca–Mg silicate hosts;664
17.7;14.7. Zn, Cu, Pb sulfide deposits ingneiss, schist, marble (meta-VMS?);667
17.8;14.8. Disseminated Cu sulfide depositsin gneiss, schist and marble;669
17.9;14.9. Scheelite, uranian phosphates,magnesite, borates in marble and Ca–Mg silicate gneiss;672
17.10;14.10. High-grade metamorphic mafic-(ultramafic)- association;673
17.11;14.11. Retrograde metamorphosed andmetasomatised mineralized structures;679
18;15 Giant deposits in geological context;688
18.1;15.1. Origin of giant deposits;688
18.1.1;15.1.1. Genetic coding and ore varieties;689
18.1.2;15.1.2. Giant deposits and their genetic andhost rock associations;697
18.2;15.2. Giant metallic deposits:geotectonic setting;704
18.3;15.3. Giant metal accumulations ingeological time;705
18.4;15.4. Why ore “giants” are so big andare where they are?;710
19;16 Giant deposits: industry, economics, politics;714
19.1;16.1. Historical background;714
19.2;16.2. Giant deposits and corporations;718
19.3;16.3. “Ore giants” and economics;723
19.4;16.4. Investment risk in exploration andmining;728
20;17 Finding or acquiring giant deposits;736
20.1;17.1. Introduction;736
20.2;17.2. History of discovery of giant oredeposits/districts;743
20.3;17.3. Acquiring giant deposits fortomorrow;753
20.3.1;17.3.1. Acquisition of an existing deposit;754
20.3.2;17.3.2. Finding “ore giants” using geology;755
21;Epilogue;760
22;References;766
23;Index of mineral deposits;838
24;Subject Index;846
25;Appendix: Database of significant metalaccumulations;859




