Buch, Englisch, 126 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 230 g
Reihe: SpringerBriefs in Probability and Mathematical Statistics
Buch, Englisch, 126 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 230 g
Reihe: SpringerBriefs in Probability and Mathematical Statistics
ISBN: 978-981-19-3830-6
Verlag: Springer Nature Singapore
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
Introduction- main questions to be answered- our approach- what is meant with analytical- why Lp-measure spaces with weights? Lebesgue measure too restrictive (... from the perspective of stochastics), e.g. there are unique invariant measures different to Lebesgue measure- orientation towards weighted measure spaces (pre-invariant measures)
1. The Cauchy problem in Lp-spaces with weights1.1 The abstract setting, existence1.2 Existence and regularity of pre-invariant densities (class of admissible coefficients)1.3 Uniqueness (Lp-uniqueness), regularity and analytic irreducibility of solutions to the CP
2. Stochastic Differential Equations2.1 Existence2.1.1 Construction of a Markov process corresponding to a regularized version of the solution to the Cauchy problem2.1.2. Main tools: Krylov type estimate of additive functionals $\mathbb{E}_x[\int_0^t f(X_s)ds]$2.1.3. Identification of weak solutions to SDEs (or identification of the SDE weakly solved by …)
2.2 Global properties2.2.1 Non-explosion and moment inequalities2.2.2 Irreducibility, transience and recurrence 2.2.3 Long time behavior: Ergodicity, existence and uniqueness of invariant measures, examples/counterexamples
2.3 Uniqueness 2.3.1 Pathwise uniqueness and strong solutions 2.3.2 Uniqueness in law (via the martingale problem)
2.4 Further topics (convergence, approximation)
Outlook




