Lemmerling / van Huffel | Total Least Squares and Errors-in-Variables Modeling | Buch | 978-1-4020-0476-6 | sack.de

Buch, Englisch, 398 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1660 g

Lemmerling / van Huffel

Total Least Squares and Errors-in-Variables Modeling

Analysis, Algorithms and Applications
2002
ISBN: 978-1-4020-0476-6
Verlag: Springer Netherlands

Analysis, Algorithms and Applications

Buch, Englisch, 398 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1660 g

ISBN: 978-1-4020-0476-6
Verlag: Springer Netherlands


In response to a growing interest in Total Least Squares (TLS) and Errors-In-Variables (EIV) modeling by researchers and practitioners, well-known experts from several disciplines were invited to prepare an overview paper and present it at the third international workshop on TLS and EIV modeling held in Leuven, Belgium, August 27-29, 2001. These invited papers, representing two-thirds of the book, together with a selection of other presented contributions yield a complete overview of the main scientific achievements since 1996 in TLS and Errors-In-Variables modeling. In this way, the book nicely completes two earlier books on TLS (SIAM 1991 and 1997). Not only computational issues, but also statistical, numerical, algebraic properties are described, as well as many new generalizations and applications. Being aware of the growing interest in these techniques, it is a strong belief that this book will aid and stimulate users to apply the new techniques and models correctly to their own practical problems.

Lemmerling / van Huffel Total Least Squares and Errors-in-Variables Modeling jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


to Total Least Squares and Errors-in-Variables Modeling.- TLS and its Improvements by Semiparametric Approach.- Unifying Least Squares, Total Least Squares and Data Least Squares.- Bounds for the Least Squares Residual Using Scaled TLS.- Recent Developments in Rank Revealing and Lanczos Methods for Total Least Squares Related Problems.- A Regularized Total Least Squares Algorithm.- The Parametric Quadratic Form Method for Solving TLS Problems with Elementwise Weighting.- Structured Total Least Squares: Analysis, Algorithms and Applications.- Fast Structured Total Least Squares Algorithms via Exploitation of the Displacement Structure.- The Extended STLS Algorithm for Minimizing the Extended LS Criterion.- Bayesian Smoothing for Measurement Error Problems.- On the Polynomial Measurement Error Model.- On Consistent Estimators in Nonlinear Functional EIV Models.- On Consistent Estimators in Linear and Bilinear Multivariate Errors-in-Variables Models.- Identification of Semi-Linear Models Within an Errors-in-Variables Framework.- Cox’s Proportional Hazards Model under Covariate Measurement Error.- State-Space Estimation with Uncertain Models.- Models for Robust Estimation and Identification.- Robust Solutions to Linear Approximation Problems Under Ellipsoidal Uncertainty.- QR Factorization of the Jacobian in Some Structured Nonlinear Least Squares Problems.- Neural Minor Component Analysis and TLS.- On the Structural Line Segment Model.- Model Fitting for Multiple Variables by Minimising the Geometric Mean Deviation.- Perspectives on Errors-in-Variables Estimation for Dynamic Systems.- Errors-in-Variables Filtering in Behavioural and State-Space Contexts.- Weighted Total Least Squares, Rank Deficiency and Linear Matrix Structures.- Frequency-Domain TLS and GTLS Algorithmsfor Modal Analysis Applications.- A New Decimative Spectral Estimation Method with Unconstrained Model Order and Decimation Factor.- Modeling Audio with Damped Sinusoids Using Total Least Squares Algorithms.- Real-Time TLS Algorithms in Gaussian and Impulse Noise Environments.- Efficient Computation of the Riemannian SVD in Total Least Squares Problems in Information Retrieval.- Constrained Total Least Squares for Color Image Reconstruction.- Total Least Squares in Astronomy.- TLS and Constrained TLS Neural Networks for Computer Vision.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.