Levendis | Time Series Econometrics | Buch | 978-3-031-37309-1 | sack.de

Buch, Englisch, 488 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 916 g

Reihe: Springer Texts in Business and Economics

Levendis

Time Series Econometrics

Learning Through Replication
2. Auflage 2023
ISBN: 978-3-031-37309-1
Verlag: Springer International Publishing

Learning Through Replication

Buch, Englisch, 488 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 916 g

Reihe: Springer Texts in Business and Economics

ISBN: 978-3-031-37309-1
Verlag: Springer International Publishing


Revised and updated for the second edition, this textbook allows students to work through classic texts in economics and finance, using the original data and replicating their results. In this book, the author rejects the theorem-proof approach as much as possible, and emphasizes the practical application of econometrics. They show with examples how to calculate and interpret the numerical results.

This book begins with students estimating simple univariate models, in a step by step fashion, using the popular Stata software system. Students then test for stationarity, while replicating the actual results from hugely influential papers such as those by Granger & Newbold, and Nelson & Plosser. Readers will learn about structural breaks by replicating papers by Perron, and Zivot & Andrews. They then turn to models of conditional volatility, replicating papers by Bollerslev. Students estimate multi-equation models such as vector autoregressions and vector error-correction mechanisms, replicating the results in influential papers by Sims and Granger. Finally, students estimate static and dynamic panel data models, replicating papers by Thompson, and Arellano & Bond.

The book contains many worked-out examples, and many data-driven exercises. While intended primarily for graduate students and advanced undergraduates, practitioners will also find the book useful.

“How to best start learning time series econometrics? Learning by doing. This is the ethos of this book. What makes this book useful is that it provides numerous worked out examples along with basic concepts. It is a fresh, no-nonsense, practical approach that students will love when they start learning time series econometrics. I recommend this book strongly as a study guide for students who look for hands-on learning experience."

--Professor Sokbae "Simon" Lee, Columbia University, Co-Editor of Econometric Theory and Associate Editor of Econometrics Journal.

Levendis Time Series Econometrics jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Introduction.- ARMA(p,q) Processes.- Model Selection in ARMA(p,q) processes.- Stationarity and Invertibility.- Non-stationarity and ARIMA(p,d,q) processes.- Seasonal ARMA(p,q) processe.- Unit root tests.- Structural Breaks.- ARCH, GARCH and Time-varying Variance.- Vector Autoregressions I: Basics.- Vector Autoregressions II: Extensions.- Cointegration and VECMs.- Static Panel Data Models.- Dynamic Panel Data Models.- Conclusion.


John Levendis is Professor of Business Analytics and Economics and holder of the William Barnett Professorship in Free Enterprise Studies at Loyola University New Orleans (US). Professor Levendis earned his Ph.D. in Economics from the University of Iowa. He has taught at Cornell College, the Economics University of Prague, the University of Iowa, and Southeastern Louisiana University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.