Buch, Englisch, Band 26, 215 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1110 g
Theory and Applications
Buch, Englisch, Band 26, 215 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1110 g
Reihe: Computational Imaging and Vision
ISBN: 978-1-4020-1293-8
Verlag: Springer Netherlands
"During the past decade, researchers in computer vision have found that probabilistic machine learning methods are extremely powerful. This book describes some of these methods. In addition to the Maximum Likelihood framework, Bayesian Networks, and Hidden Markov models are also used. Three aspects are stressed: features, similarity metric, and models. Many interesting and important new results, based on research by the authors and their collaborators, are presented.
Although this book contains many new results, it is written in a style that suits both experts and novices in computer vision."
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Zeichen- und Zahlendarstellungen
Weitere Infos & Material
1. Introduction.- 2. Maximum Likelihood Framework.- 3. Color Based Retrieval.- 4. Robust Texture Analysis.- 5. Shape Based Retrieval.- 6. Robust Stereo Matching and Motion Tracking.- 7. Facial Expression Recognition.- References.