Li / Maruyama | Single-Walled Carbon Nanotubes | E-Book | www.sack.de
E-Book

E-Book, Englisch, 340 Seiten

Reihe: Topics in Current Chemistry Collections

Li / Maruyama Single-Walled Carbon Nanotubes

Preparation, Properties and Applications
1. Auflage 2019
ISBN: 978-3-030-12700-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Preparation, Properties and Applications

E-Book, Englisch, 340 Seiten

Reihe: Topics in Current Chemistry Collections

ISBN: 978-3-030-12700-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience.
Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field.

Li / Maruyama Single-Walled Carbon Nanotubes jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Contents;6
2;Preface;8
3;Modeling the Growth of Single-Wall Carbon Nanotubes;10
3.1;Abstract;10
3.2;1 Introductio;10
3.3;2 Metal--Carbon Interactions;12
3.4;3 Interatomic Interaction Models and Computer Simulation Techniques;15
3.5;4 Properties of the sp2 Carbon Wall--Metal Catalyst Interface;17
3.6;5 Nucleation of Carbon Caps;19
3.7;6 Modeling the Growth of Carbon Nanotubes;22
3.8;7 Controlling Growth Modes;25
3.9;8 Conclusions;28
3.10;Acknowledgements;30
3.11;References;30
4;Metallic Catalysts for Structure-Controlled Growth of Single-Walled Carbon Nanotubes;33
4.1;Abstract;33
4.2;1 Introduction;34
4.3;2 Growth Mechanism of SWNTs;35
4.4;3 Catalysts for Diameter-Controlled Growth of SWNTs;38
4.4.1;3.1 Size-Controlled Preparation of Metallic Nanocatalysts;38
4.4.1.1;3.1.1 Capping Agent-Assisted Preparation of Nanoparticles with Narrow Size Distribution;38
4.4.1.2;3.1.2 Using Precursors with Uniform Size to Prepare Mono-Dispersed Nanoparticles;40
4.4.1.3;3.1.3 Catalyst Nanoparticles Confined in Porous Materials;44
4.4.2;3.2 Dispersion of Catalytic Nanoparticles;45
4.4.3;3.3 Evolution of Catalytic Nanoparticles;46
4.4.3.1;3.3.1 Evolution of Fe Nanoparticles During Calcination and Reduction;46
4.4.3.2;3.3.2 Prevent Aggregation and Ripening of Catalytic Nanoparticles;49
4.5;4 Chirality-Selective Growth of SWNTs;50
4.5.1;4.1 Bimetallic Catalysts;51
4.5.2;4.2 Supported Catalysts;52
4.5.3;4.3 Preparing Catalysts via Intermediates with Uniform Size;53
4.5.4;4.4 Solid-State Catalysts;53
4.5.5;4.5 Intermetallic Compound Catalysts;56
4.5.6;4.6 Summary of Chirality-Specific Growth;58
4.6;5 Effect of the CVD Conditions on the Selective Growth of SWNTs;59
4.6.1;5.1 Effect of Carbon Precursor Species;59
4.6.2;5.2 Effect of Carbon Feeding;60
4.6.3;5.3 Effect of Growth Temperature;61
4.6.4;5.4 Effect of Additive Species;62
4.6.5;5.5 Effect of the Growth Environment;64
4.7;6 Summary;65
4.8;Acknowledgements;65
4.9;References;66
5;Preparation of Horizontal Single-Walled Carbon Nanotubes Arrays;76
5.1;Abstract;76
5.2;1 Introduction;77
5.3;2 Orientational Growth of SWNTs;78
5.3.1;2.1 Gas Flow-Directed Growth;79
5.3.2;2.2 Surface Structure-Guided Growth;81
5.3.3;2.3 External Field-Directed Growth;81
5.3.4;2.4 Density Improvement Method;82
5.3.4.1;2.4.1 Trojan Catalyst Technique;82
5.3.4.2;2.4.2 Multiple Growth/Transfer Technique;83
5.3.5;2.5 Growth of Arrays of Complex SWNT Structures;84
5.4;3 Selective Preparation of s-/m-SWNT Arrays;84
5.4.1;3.1 Catalyst Design;84
5.4.1.1;3.1.1 Monometal Catalyst;86
5.4.1.2;3.1.2 Bimetal Catalyst;87
5.4.1.3;3.1.3 Nonmetal Catalyst;87
5.4.2;3.2 Cap Engineering;88
5.4.3;3.3 In Situ Etching Method;90
5.4.4;3.4 Ex Situ Removal/Etching Method;93
5.5;4 Self-Assembly from SWNT Solution;95
5.5.1;4.1 Dielectrophoresis (DEP);95
5.5.2;4.2 Surface Modification-Assisted Adsorption;96
5.5.3;4.3 Langmuir--Blodgett and Langmuir--Schaefer Techniques;98
5.5.4;4.4 Evaporation-Driven Self-Assembly;98
5.6;Acknowledgements;100
5.7;References;100
6;Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition;106
6.1;Abstract;106
6.2;1 Introduction;107
6.3;2 CNT Synthesis Process and Mechanism;108
6.4;3 CNT Film Fabrication;111
6.5;4 2D Network Film;112
6.6;5 Patterned Film Fabrication;116
6.7;6 Characterization, requirements, and performance of CNT films fabricated by FCCVD for use as TCFs;117
6.8;7 Applications of SWNT Films in Touch Sensors and Display Electrodes;124
6.9;8 Summary and Outlook;129
6.10;Acknowledgements;130
6.11;References;130
7;Sorting Carbon Nanotubes;136
7.1;Abstract;136
7.2;1 Introduction;137
7.2.1;1.1 Separation in Nature and in Human Technologies;138
7.2.2;1.2 The CNT Sorting Problem;138
7.2.3;1.3 Special Challenges in CNT Sorting;140
7.3;2 A Brief Account of the CNT Sorting Methodologies;141
7.3.1;2.1 Ion Exchange Chromatography (IEX) Separation of DNA- and Surfactant-Coated CNTs;141
7.3.2;2.2 Density Gradient Ultracentrifugation (DGU);144
7.3.3;2.3 Selective Extraction in Organic Solvents by Conjugated Polymers and Small Molecules;145
7.3.4;2.4 Gel Chromatography;146
7.3.5;2.5 Aqueous Two-Phase (ATP) Extraction;147
7.4;3 Sorting Mechanisms;150
7.4.1;3.1 Solvation Structure, Solvation Energy and its Distribution;150
7.4.2;3.2 Electronic-Structure-Based Sorting via Redox Tuning;153
7.4.2.1;3.2.1 Redox Chemistry of CNTs;153
7.4.2.2;3.2.2 Evidence for the Role of Redox in Bandgap-Based Sorting;154
7.4.2.3;3.2.3 Molecular Mechanism of Redox Sorting;156
7.4.3;3.3 Atomic-Structure-Based Sorting via Ordered Coating Structure Formation;158
7.4.4;3.4 Nanotube Length Effect on Atomic- and Electronic-Structure-Based Separation;160
7.4.5;3.5 Resolution Limit of Atomic-Structure-Based Separation;161
7.4.6;3.6 Evolvability of DNA-Based Sorting;162
7.5;4 Future Directions;163
7.5.1;4.1 Sorting Other Types of Nanotubes;163
7.5.2;4.2 Quantifying Solvation Interactions;164
7.5.3;4.3 Expanding Functions of DNA-CNT Hybrids;164
7.6;Acknowledgments;165
7.7;References;165
8;Electronic and Optical Properties of Single Wall Carbon Nanotubes;172
8.1;Abstract;172
8.2;1 Introduction;172
8.3;2 Electronic Raman Spectroscopy of Metallic Nanotubes;174
8.3.1;2.1 Breit--Wigner--Fano Lineshape and Continuous Spectra;174
8.3.2;2.2 Theory of Electronic Raman Spectra;177
8.4;3 Thermoelectricity of SWNTs;179
8.4.1;3.1 Rediscovering Potential Applications of SWNTs in Thermoelectricity;179
8.4.2;3.2 Methods for Calculating Thermoelectric Properties;180
8.4.3;3.3 Chemical Potential Dependence of Thermopower;181
8.4.4;3.4 Chirality-Dependent Thermopower;182
8.4.5;3.5 Quantum Confinement Effects in Thermoelectricity;184
8.5;4 Coherent Phonon Spectroscopy of SWNTs;185
8.5.1;4.1 Modeling Coherent Phonon Generation;185
8.5.2;4.2 Single Phonon Mode Generation in Single Chirality SWNTs;187
8.6;5 Discrete Energy Levels in Finite-Length SWNT;188
8.7;Acknowledgements;193
8.8;References;193
9;Review of Electronics Based on Single-Walled Carbon Nanotubes;196
9.1;Abstract;196
9.2;1 Introduction;197
9.3;2 SWNT RF Electronics;198
9.3.1;2.1 SWNT RF Transistors Based on CVD-Aligned Nanotubes;198
9.3.2;2.2 SWNT RF Transistors Based on Nanotube Networks;200
9.3.3;2.3 SWNT RF Transistors Based on Aligned Pre-separated SWNTs;202
9.3.4;2.4 Linearity Performance of SWNT RF Transistors;203
9.3.5;2.5 Circuit Applications Based on SWNT RF Transistors;204
9.4;3 SWNT Nanoelectronics;206
9.4.1;3.1 Single SWNT Transistor;206
9.4.2;3.2 N-Type SWNT Transistors;207
9.4.3;3.3 Transistors and Digital Circuits Based on Aligned SWNTs;211
9.4.4;3.4 Large-scale Assembly of SWNTs;212
9.4.5;3.5 3D Integration and Novel Structures of SWNT Transistors;213
9.5;4 SWNT Macroelectronics;214
9.5.1;4.1 Fabricated SWNT TFTs;214
9.5.1.1;4.1.1 Gaseous Phase-Based SWNT TFTs;214
9.5.1.2;4.1.2 Solution-Based SWNT TFTs;216
9.5.2;4.2 Printed SWNT TFTs;217
9.5.3;4.3 Applications Based on SWNT TFTs;219
9.5.3.1;4.3.1 Digital Circuits;219
9.5.3.2;4.3.2 Active-Matrix Backplanes for Display Electronics and Sensors;221
9.5.3.3;4.3.3 Flexible Electronics;224
9.6;References;225
10;Carbon Nanotube Thin Film Transistors for Flat Panel Display Application;232
10.1;Abstract;232
10.2;1 Introduction;233
10.3;2 Flat Panel Displays and TFTs;234
10.4;3 Why Is CNT-TFT Technology Promising for FPDs?;236
10.5;4 Challenges of CNT-TFT Technology for Display;239
10.5.1;4.1 SWCNT Materials and Thin Film Fabrication;240
10.5.2;4.2 The Fabrication Process of CNT-TFTs;245
10.5.3;4.3 The Electrodes and Dielectric Materials;250
10.5.4;4.4 Performance of CNT-TFTs;251
10.5.4.1;4.4.1 Ion, Ioff , and Ion/Ioff;251
10.5.4.2;4.4.2 Sub-threshold Swing (SS);254
10.5.4.3;4.4.3 Threshold Voltage (Vth);255
10.5.4.4;4.4.4 Mobility;256
10.5.4.5;4.4.5 Stability and Uniformity;258
10.6;5 Conclusions and Outlook;258
10.7;Acknowledgements;259
10.8;References;259
11;Carbon Nanotube Thin Films for High-Performance Flexible Electronics Applications;264
11.1;Abstract;264
11.2;1 Introduction;264
11.3;2 Fundamental Film Formation Processes;266
11.4;3 Thin-Film Formation for Semiconductor Applications;269
11.5;4 Conclusions and Prospects;273
11.6;References;274
12;Single-Walled Carbon Nanotubes in Solar Cells;278
12.1;Abstract;278
12.2;1 Single-Walled Carbon Nanotubes as the Photoactive Material in Solar Cells;279
12.2.1;1.1 CNT as Electron AcceptorsTransporters;280
12.2.2;1.2 CNT as Light Absorber and Electron Donor;282
12.2.3;1.3 CNT as Charge Transporter and Others;283
12.3;2 Single-Walled Carbon Nanotubes as a Transparent Electrode in Solar Cells;284
12.3.1;2.1 Single-Walled Carbon Nanotubes as a Transparent Electrode in Silicon Solar Cells;286
12.3.2;2.2 Single-Walled Carbon Nanotubes as a Transparent Electrode in Organic Solar Cells;290
12.3.3;2.3 Single-Walled Carbon Nanotubes as a Transparent Electrode in Perovskite Solar Cells;294
12.3.3.1;2.3.1 DSSCs;294
12.3.3.2;2.3.2 PSCs;296
12.4;References;299
13;Advances in Production and Applications of Carbon Nanotubes;306
13.1;Abstract;306
13.2;1 Introduction;307
13.3;2 Synthesis and Production Scale-Up;307
13.3.1;2.1 Basic Principles of CNT Synthesis;307
13.3.2;2.2 Synthesis of SWNTs;308
13.3.3;2.3 Synthesis of MWNTs;309
13.3.4;2.4 Production Scale-Up of CNTs Using Fluidized-Bed CVD;311
13.4;3 Postprocessing of CNTs;312
13.4.1;3.1 CNT Purification and Dispersion;312
13.4.2;3.2 Heteroatom Doping;315
13.5;4 Application Advances;316
13.5.1;4.1 Macroscopic Assemblies and Their Applications;316
13.5.2;4.2 Composite Materials;319
13.5.3;4.3 Energy Storage;322
13.5.3.1;4.3.1 Lithium-Ion Batteries;322
13.5.3.2;4.3.2 Supercapacitors;326
13.5.4;4.4 Catalysis Applications;329
13.5.5;4.5 Environmental Applications;332
13.5.5.1;4.5.1 Gas Filtration;332
13.5.5.2;4.5.2 Water Absorption and Filtration;334
13.6;5 Summary and Outlook;335
13.7;Acknowledgements;336
13.8;References;336



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.