E-Book, Englisch, 435 Seiten
Lin Cell Analysis on Microfluidics
1. Auflage 2018
ISBN: 978-981-10-5394-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 435 Seiten
Reihe: Integrated Analytical Systems
ISBN: 978-981-10-5394-8
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents a detailed overview of the design, formatting, application, and development of microfluidic chips in the context of cell biology research, enumerating each element involved in microfluidics-based cell analysis, discussing its history, status quo, and future prospects, It also offers an extensive review of the research completed in the past decade, including numerous color figures. The individual chapters are based on the respective authors' studies and experiences, providing tips from the frontline to help researchers overcome bottlenecks in their own work. It highlights a number of cutting-edge techniques, such as 3D cell culture, microfluidic droplet technique, and microfluidic chip-mass spectrometry interfaces, offering a first-hand impression of the latest trends in the field and suggesting new research directions. Serving as both an elementary introduction and advanced guidebook, the book interests and inspires scholars and students who are currently studying microfluidics-based cell analysis methods as well as those who wish to do so.
Professor Jin-Ming Lin was born in 1963. He received his Bachelor of Science degree at Fuzhou University in 1984 and his PhD in analytical chemistry at Tokyo Metropolitan University, Japan in 1997. He studied and worked at Showa University, Japan and Tokyo Metropolitan University from 1992 to 2002. He was a professor at the Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences from 2002 to 2004, and has been a professor at Tsinghua University, China since 2004 and was selected as Cheung Kung Scholars Professor of Ministry of Education, China at 2008. He is a Fellow of Royal Chemical Society. He is a general secretary and deputy chair of Mass Spectrometry Committee, Chinese Chemical Society, a vice president Chinese Society of Mass Spectrometry, and a member of the council of the Chinese Society for Chromatography Science. He received several awards for his contributions in chemiluminescence and separation science: Outstanding Young Chemist Award (Chinese Chemical Society, 1992), Young Analyst Award for Flow Injection Analysis (Flow Injection Section, Japan Society of Analytical Chemistry, 2000), Kanton New Century Award (Japan Society of Analytical Chemistry, 2001), National Science Fund for Distinguished Young Scholars of China (National Natural Science Foundation of China, 2002), FIA Award for Science (Flow Injection Section, Japan Society of Analytical Chemistry, 2008), GC Contribution Award (GC Discussion Group, Japan Society of Analytical Chemistry, 2008, 2013), CAIA Awards (China Association for Instrumental Analysis, 2009, 2010 and 2015), Science and Censorship Award (General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2010), Award for Science and Technology(Beijing City, 2013), Natural Science Award (Ministry of Education, China, 2015), Liang Shuquan Award for Analytical Chemistry (Chinese Chemical Society, 2015), and Silver Prize from The 10th Race Award for Innovation and Creative Patents (The Innovation Association of Beijing City, China, 2016). His current research is focused on sample pretreatment, chemiluminescence and microfluidic devices. He is the author and co-author of 388 original research papers published in international journals, 32 reviews, 4 books and 45 patents.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;10
3;1 Design and Preparation of Microfluidics Device;12
3.1;Abstract;12
3.2;1.1 Introduction;12
3.3;1.2 Development of Microfluidic Chip Material;16
3.3.1;1.2.1 Inorganic Material in Chip Preparation;17
3.3.2;1.2.2 Silicon Elastomer;20
3.3.3;1.2.3 Thermoset and Thermoplastic Materials;21
3.3.4;1.2.4 Hydrogel Material;22
3.3.5;1.2.5 Paper Based Microfluidic Devices;22
3.3.6;1.2.6 Hybrid Material Chip;25
3.4;1.3 Chip Fabrication;26
3.4.1;1.3.1 Soft Lithography;26
3.4.2;1.3.2 Fabrication of Extended-Nano Channels;27
3.4.3;1.3.3 3D Printing Technology;28
3.4.3.1;1.3.3.1 Stereolithography;28
3.4.3.2;1.3.3.2 Fused Deposition Method;30
3.5;1.4 Integration of Microfluidics Functional Units;31
3.5.1;1.4.1 Flow Manipulation: Micropump, Microvalve and Mixer;31
3.5.2;1.4.2 Concentration Gradient Generator;33
3.5.3;1.4.3 Cell Culture Chamber;35
3.5.4;1.4.4 Integrated Biosensors;35
3.5.4.1;1.4.4.1 Enzyme Catalyzed Biosensor;35
3.5.4.2;1.4.4.2 Immune Sensor;36
3.5.5;1.4.5 Microfluidic Centrifuge Device;37
3.6;1.5 Development and Outlooks;38
3.6.1;1.5.1 Point of Care (POC);38
3.6.2;1.5.2 Implantable Device;40
3.6.3;1.5.3 Smart Mobile Device;41
3.7;References;42
4;2 Recent Development of Cell Analysis on Microfludics;54
4.1;Abstract;54
4.2;2.1 Introduction;54
4.3;2.2 Cell Culture;56
4.3.1;2.2.1 3D Cell Culture;56
4.3.2;2.2.2 Cell Co-culture;57
4.3.3;2.2.3 Tissues/Organs-on-Chips;59
4.4;2.3 Cell Manipulation;60
4.4.1;2.3.1 Microstructures;60
4.4.2;2.3.2 Free-Flow Manipulation;61
4.4.3;2.3.3 Electrokinetic Operations;62
4.5;2.4 Cell Stimulation;63
4.5.1;2.4.1 Flow Control;64
4.5.2;2.4.2 Gradient Generation;65
4.5.3;2.4.3 Mechanical Stimuli;67
4.6;2.5 Cell Analysis;69
4.6.1;2.5.1 Sample Preparation;70
4.6.1.1;2.5.1.1 Cell Sorting;70
4.6.1.2;2.5.1.2 Cell Lysis;73
4.6.1.3;2.5.1.3 Sample Separation;75
4.6.2;2.5.2 Cell Analysis;78
4.6.2.1;2.5.2.1 Cell Morphology and Movement;78
4.6.2.2;2.5.2.2 Genetic Analysis;80
4.6.2.3;2.5.2.3 Protein Analysis;82
4.6.2.4;2.5.2.4 Metabolite Analysis;86
4.7;2.6 Conclusion and Perspective;87
4.8;References;88
5;3 Microfluidic Cell Isolation and Recognition for Biomedical Applications;105
5.1;Abstract;105
5.2;3.1 Introduction;105
5.3;3.2 Physical Approaches for Cell Isolation in Microfluidics;107
5.3.1;3.2.1 Microfabricated Structures for Cell Trap;107
5.3.2;3.2.2 Hydrodynamic Force for Cell Separation;109
5.3.3;3.2.3 Surface Acoustic Wave-Based Cell Isolation;110
5.3.4;3.2.4 Dielectrophoresis-Based Cell Sorting;111
5.4;3.3 Affinity-Based Cell Isolation in Microfluidics;113
5.4.1;3.3.1 Antibody-Based Cell Recognition;113
5.4.2;3.3.2 Aptamer-Specific Cell Capture;114
5.4.3;3.3.3 Cell Capture on Bio-Nano-Interfaces;115
5.5;3.4 Recent Technologies for Biomedical Applications;117
5.5.1;3.4.1 CTCs Isolation, Recognition and Detection;117
5.5.2;3.4.2 Cell-Based Biological Assays;119
5.5.3;3.4.3 Stem Cell Purification and Screening;119
5.6;3.5 Conclusion and Future Perspective;121
5.7;References;122
6;4 Cell Culture and Observation on Microfluidics;129
6.1;Abstract;129
6.2;4.1 Introduction;129
6.3;4.2 Types of Cell Culture;130
6.3.1;4.2.1 Two-Dimensional (2D) Culture;131
6.3.2;4.2.2 Three-Dimensional (3D) Culture;132
6.4;4.3 Cell Manipulation;134
6.5;4.4 Cellular Microenvironment Control;136
6.5.1;4.4.1 Gradient of Physical Factors;136
6.5.2;4.4.2 Gradient of Chemical Factors;139
6.5.3;4.4.3 Cell-Cell and Cell-Extracellular Matrix (ECM) Interactions;140
6.6;4.5 Non-destructive Observation Methods on Microfluidic Devices;142
6.6.1;4.5.1 Optical Methods;144
6.6.2;4.5.2 Electrochemical Methods;145
6.7;4.6 Applications in Cellular Biology and Metabolomics;146
6.7.1;4.6.1 Signal Transduction;146
6.7.2;4.6.2 Gene Expression;148
6.7.3;4.6.3 Metabolic Function Analysis;148
6.8;4.7 Perspectives;149
6.9;References;149
7;5 Cell Migration with Microfluidic Chips;158
7.1;Abstract;158
7.2;5.1 Introduction;158
7.3;5.2 Microfluidic-Based Chemotaxis Research;163
7.3.1;5.2.1 Microfluidic Gradient Generator;163
7.3.1.1;5.2.1.1 Convective Flow-Based Microfluidic Gradient Generator;164
7.3.1.2;5.2.1.2 Diffusion-Based Microfluidic Gradient Generator;167
7.3.2;5.2.2 Convective Flow- and Diffusion-Based Cell Chemotaxis Study;173
7.3.2.1;5.2.2.1 Convective Flow-Based Cell Chemotaxis Study;173
7.3.2.2;5.2.2.2 Diffusion-Based Cell Chemotaxis Study;176
7.4;5.3 Microfluidic-Based Electrotaxis Research;177
7.4.1;5.3.1 Microfluidic-Based Electrotaxis Research in Single Electric Field;179
7.4.2;5.3.2 Microfluidic-Based Electrotaxis Research in Multiple Electric Field;180
7.5;5.4 Conclusions;181
7.6;References;182
8;6 Biomaterial-Based Microfluidics for Cell Culture and Analysis;189
8.1;Abstract;189
8.2;6.1 Introduction;189
8.3;6.2 Materials of Making Microfluidic Chips;190
8.3.1;6.2.1 Inorganic Materials;190
8.3.2;6.2.2 Polymeric Materials;192
8.3.2.1;6.2.2.1 Plastics;192
8.3.2.2;6.2.2.2 Elastomers;194
8.3.3;6.2.3 Hydrogels and Papers;195
8.3.3.1;6.2.3.1 Hydrogels;195
8.3.3.2;6.2.3.2 Papers;196
8.4;6.3 Cell Culture;197
8.4.1;6.3.1 Plane Cell Culture;198
8.4.2;6.3.2 3D Cell Culture;201
8.5;6.4 Organ-on-Chip System;206
8.6;6.5 Simulation and Manipulation of Cell Microenvironment on Chips;210
8.7;6.6 On-Chip Cell Observation;212
8.7.1;6.6.1 Cell Immobilization;213
8.7.2;6.6.2 Cell Imaging;215
8.8;6.7 On-Chip Cell Analysis;217
8.8.1;6.7.1 Population Cell Analysis;217
8.8.2;6.7.2 Single Cell Analysis;219
8.8.3;6.7.3 Chip-MS Technology;221
8.9;6.8 Summary;224
8.10;References;225
9;7 Droplet-Based Microfluidic Technology for Cell Analysis;233
9.1;Abstract;233
9.2;7.1 Introduction;233
9.3;7.2 Principles of Droplet Generation;238
9.3.1;7.2.1 Surface Tension ?;238
9.3.2;7.2.2 Dimensionless Numbers;239
9.4;7.3 Methods for Droplet Generation;240
9.4.1;7.3.1 T-junction;241
9.4.2;7.3.2 Flow Focusing Structure;241
9.4.3;7.3.3 Co-flowing Structure;243
9.4.4;7.3.4 Other Methods;243
9.5;7.4 Analytical Methods in Droplet Microfluidic;244
9.5.1;7.4.1 Fluorescence;244
9.5.2;7.4.2 Mass Spectrometry (MS);246
9.5.3;7.4.3 Electrochemical Detection and Capillary Electrophoresis;248
9.5.4;7.4.4 Other Methods;248
9.6;7.5 Single Cell Analysis;249
9.6.1;7.5.1 Encapsulation of Single Cells;249
9.6.2;7.5.2 Droplet Sorting;251
9.6.3;7.5.3 Protein Analysis;254
9.6.4;7.5.4 Single Cell PCR;255
9.7;7.6 Cell Manipulation;256
9.8;7.7 Summary and Prospect;259
9.9;References;261
10;8 Single Cell Analysis on Microfluidic;271
10.1;Abstract;271
10.2;8.1 Introduction;271
10.2.1;8.1.1 Lab on a Chip;271
10.2.2;8.1.2 Single Cell Analysis and Microfluidic;272
10.3;8.2 Tissue Dissociation;273
10.3.1;8.2.1 Conventional Approaches of Tissue Dissociation;273
10.3.2;8.2.2 Tissue Dissociation on Microfluidic;274
10.4;8.3 Cell Sorting;275
10.4.1;8.3.1 Conventional Approaches of Cell Sorting;275
10.4.2;8.3.2 Cell Sorting on Microfluidic;275
10.4.2.1;8.3.2.1 Electrophoresis and Dielectrophoresis;276
10.4.2.2;8.3.2.2 Electro-Osmotic Flow;277
10.4.2.3;8.3.2.3 Acoustic;277
10.4.2.4;8.3.2.4 Optical;280
10.4.2.5;8.3.2.5 Other Approaches;282
10.4.3;8.3.3 Outlook for Cell Sorting on Microfluidic;282
10.5;8.4 Single Cell Isolation;282
10.5.1;8.4.1 Conventional Approaches of Single Cell Isolation;282
10.5.2;8.4.2 Single Cell Isolation on Microfluidic;283
10.5.2.1;8.4.2.1 Valves;284
10.5.2.2;8.4.2.2 Dielectrophoretic;284
10.5.2.3;8.4.2.3 Microwells;285
10.5.2.4;8.4.2.4 Hydrodynamic;285
10.5.2.5;8.4.2.5 Droplets;287
10.6;8.5 Single Cell Lysis;288
10.6.1;8.5.1 Conventional Approaches of Single Cell Lysis;288
10.6.2;8.5.2 Single Cell Lysis on Microfluidic;289
10.6.2.1;8.5.2.1 Mechanical;289
10.6.2.2;8.5.2.2 Thermal;290
10.6.2.3;8.5.2.3 Chemical;290
10.6.2.4;8.5.2.4 Electrical;291
10.7;8.6 Single Cell Analysis;292
10.7.1;8.6.1 Single Cell Fluorescence Imaging;292
10.7.2;8.6.2 Single Cell Electrochemical Analysis;292
10.7.3;8.6.3 Single Cell Mass Spectrometry;293
10.8;8.7 Future Outlook;293
10.9;References;294
11;9 Microfluidics-Mass Spectrometry for Cell Analysis;299
11.1;Abstract;299
11.2;9.1 Introduction;299
11.3;9.2 Mass Spectrometer Interface;301
11.3.1;9.2.1 ESI Interface;302
11.3.2;9.2.2 MALDI Interface;304
11.4;9.3 On-Chip Sample Pretreatment;305
11.4.1;9.3.1 Sample Preconcentration;305
11.4.2;9.3.2 Sample Separation;307
11.5;9.4 Analytical Application;308
11.5.1;9.4.1 Proteomics;308
11.5.2;9.4.2 Metabolomics;309
11.5.3;9.4.3 Glycomics;311
11.5.4;9.4.4 Single Cell Analysis;312
11.6;9.5 Conclusion and Future Perspective;313
11.7;References;314
12;10 Biochemical Analysis Techniques Integrated on Microfluidic Chips and Their Applications;320
12.1;Abstract;320
12.2;10.1 Introduction;320
12.3;10.2 Biochemical Analysis Techniques Integrated on Chips;321
12.3.1;10.2.1 Optical Detector;321
12.3.2;10.2.2 Electronic Manipulation;324
12.3.3;10.2.3 Magnetic Operation;327
12.3.4;10.2.4 Surface Acoustic Wave;329
12.4;10.3 Applications;332
12.5;10.4 Genetic Analysis;332
12.6;10.5 Protein Analysis;335
12.7;10.6 Conclusions and Outlooks;338
12.8;References;338
13;11 Microfluidic Cell Culture Systems for Drug Research;346
13.1;Abstract;346
13.2;11.1 Introduction;347
13.3;11.2 Microfluidic Chip;347
13.3.1;11.2.1 Cell-Based Microfluidic Model Systems;348
13.3.2;11.2.2 3D Cell Culture in Microfluidic Chip;350
13.3.3;11.2.3 Organs on a Chip;352
13.3.3.1;11.2.3.1 Liver;354
13.3.3.2;11.2.3.2 Intestine;355
13.3.3.3;11.2.3.3 Lung;358
13.3.3.4;11.2.3.4 Vasculature;358
13.3.3.5;11.2.3.5 Kidney;361
13.3.3.6;11.2.3.6 Brain;361
13.3.3.7;11.2.3.7 Multi-Organ-on-a-Chip;361
13.3.4;11.2.4 Whole Organisms on a Chip;362
13.4;11.3 Chip-MS Platform;364
13.5;11.4 Application in Drug Research;366
13.5.1;11.4.1 Drug Delivery;367
13.5.2;11.4.2 Drug Metabolism and Toxicity;367
13.5.3;11.4.3 Oral Drug Pharmacokinetics System;368
13.5.4;11.4.4 Drug-Droplet Technology;370
13.6;11.5 Challenges and Prospects;371
13.7;References;372
14;12 Cell Metabolite Analysis on Microfluidic Platform;378
14.1;Abstract;378
14.2;12.1 Introduction;379
14.3;12.2 Models of Cell Culture on Microfluidic Platform;381
14.3.1;12.2.1 Cell Culture Models in Microfluidic Systems;381
14.3.1.1;12.2.1.1 2D Cell Culture;381
14.3.1.2;12.2.1.2 3D Cell Culture;383
14.3.1.3;12.2.1.3 Organ-on-Chip System;384
14.3.2;12.2.2 Controlling the Microenvironment In Vitro by Microfluidic Technology;385
14.3.2.1;12.2.2.1 Controlled Chemical Microenvironment;385
14.3.2.2;12.2.2.2 Controlled Mechanical Microenvironment;388
14.4;12.3 Strategy for Cell Metabolite Analysis on Microfluidic Platform;389
14.4.1;12.3.1 Sample Separation on Microfluidic Platform for Cell Metabolite Analysis;389
14.4.1.1;12.3.1.1 LC Technology;389
14.4.1.2;12.3.1.2 Droplet Technology;391
14.4.1.3;12.3.1.3 Microdialysis;391
14.4.1.4;12.3.1.4 Microchip Electrophoresis;392
14.4.2;12.3.2 Cell Metabolite Detection Systems;392
14.4.2.1;12.3.2.1 Antibody-Based Immunoassays for Cell Metabolite;393
14.4.2.2;12.3.2.2 Nucleic Acid-Based Biosensors for Cell Metabolite Analysis;395
14.4.2.3;12.3.2.3 Enzyme-Based Biosensors for Cell Metabolite Analysis;396
14.5;12.4 Application;396
14.5.1;12.4.1 Clinical Diagnostics;396
14.5.2;12.4.2 Drug Research and Development;397
14.5.3;12.4.3 Toxicology Study;398
14.6;12.5 Conclusions and Perspectives;399
14.7;References;399
15;13 Microfluidic Platforms for Microbial;404
15.1;Abstract;404
15.2;13.1 Introduction;404
15.3;13.2 Microbial Characteristics;406
15.3.1;13.2.1 Traditional Methods of Analysis and Research;407
15.3.2;13.2.2 New Technologies for the Study of Microorganisms;407
15.4;13.3 Basic Research Methods;409
15.4.1;13.3.1 Channel Culture;410
15.4.1.1;13.3.1.1 Diffusion Culture;410
15.4.1.2;13.3.1.2 Liquid Flow Culture;411
15.4.2;13.3.2 Chamber Culture;412
15.4.3;13.3.3 Agar Package;413
15.5;13.4 Single Cell Analysis;413
15.6;13.5 Applied Technology;415
15.6.1;13.5.1 Basic Sciences;415
15.6.2;13.5.2 Resistance Detection;417
15.6.3;13.5.3 Toxicity Test;417
15.6.4;13.5.4 Cancer Surveillance and Treatment;419
15.6.5;13.5.5 Microfluidic for Fuel Cell;419
15.6.6;13.5.6 Food-Brone Bacteria Detection;421
15.7;13.6 Opportunities and Challenges;422
15.8;References;424
16;Index;431




