E-Book, Englisch, Band 5, 274 Seiten
Reihe: MEMS Reference Shelf
Liu RF MEMS Switches and Integrated Switching Circuits
1. Auflage 2010
ISBN: 978-0-387-46262-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 5, 274 Seiten
Reihe: MEMS Reference Shelf
ISBN: 978-0-387-46262-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Microelectromechanical Systems (MEMS) stand poised for the next major breakthrough in the silicon revolution that began with the transistor in the 1960s and has revolutionized microelectronics. MEMS allow one to not only observe and process information of all types from small scale systems, but also to affect changes in systems and the environment at that scale. 'RF MEMS Switches and Integrated Switching Circuits' builds on the extensive body of literature that exists in research papers on analytical and numerical modeling and design based on RF MEMS switches and micromachined switching circuits, and presents a unified framework of coverage. This volume includes, but is not limited to, RF MEMS approaches, developments from RF MEMS switches to RF switching circuits, and MEMS switch components in circuit systems. This book also: -Presents RF Switches and switching circuit MEMS devices in a unified framework covering all aspects of engineering innovation, design, modeling, fabrication, control and experimental implementation -Discusses RF switch devices in detail, with both system and component-level circuit integration using micro- and nano-fabrication techniques -Includes an emphasis on design innovation and experimental relevance rather than basic electromagnetic theory and device physics 'RF MEMS Switches and Integrated Switching Circuits' is perfect for engineers, researchers and students working in the fields of MEMS, circuits and systems and RFs.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Contents;9
3;1 Introduction;11
3.1;1.1 RF MEMS Switches;11
3.2;1.2 Capacitive Shunt Switches;15
3.2.1;1.2.1 Reliability of Capacitive Switches;16
3.2.2;1.2.2 Power Handling of Capacitive Switches;16
3.2.3;1.2.3 Degradation of Down-State Capacitance;17
3.3;1.3 Coplanar Waveguide Transmission Lines;17
3.4;1.4 Single-Pole-Multi-Throw Switching Circuit (SPMT);18
3.5;1.5 Electromagnetic Band Gap (EBG) Structures for RF Circuits;21
3.6;1.6 Tunable EBG Bandpass Filters and Reconfigurable Circuits;21
3.7;1.7 Capacitive Switching Bandpass Filters;23
3.8;1.8 Substrate Transfer Process;23
3.9;1.9 Surface Planarization Process;25
3.10;References;25
4;2 Lateral Series Switches;31
4.1;2.1 Electrical Design and Simulation;31
4.1.1;2.1.1 RF Circuit Design of the Lateral Switch;32
4.1.2;2.1.2 RF Circuit Model of the Lateral Switch;33
4.1.3;2.1.3 Double-Beam Lateral Switch;38
4.2;2.2 Mechanical Design and Simulation;40
4.2.1;2.2.1 Static Electrostatic Force;40
4.2.2;2.2.2 Static Restoring Force;42
4.2.3;2.2.3 Static Threshold Voltage;43
4.2.4;2.2.4 Dynamic Frequency Response;46
4.2.5;2.2.5 Dynamic Effective Mass;49
4.2.6;2.2.6 Dynamic Switching Time;51
4.2.7;2.2.7 Dynamic Release Time;53
4.3;2.3 Device Fabrication Processes;54
4.4;2.4 Lateral Switch Characterization;56
4.4.1;2.4.1 The Single-Beam Switch and the Double-Beam Switch;56
4.4.2;2.4.2 Cantilever Beam Design Effect;61
4.4.3;2.4.3 Metal Coating Effect;64
4.4.4;2.4.4 The Lateral Switch with a Separate Fixed Electrode;66
4.5;2.5 Mechanical Measurements;68
4.5.1;2.5.1 Static behavior;68
4.5.2;2.5.2 Dynamic Behavior;69
4.5.3;2.5.3 Reliability of the Lateral Switch;70
4.6;2.6 Summary;72
4.7;References;72
5;3 Capacitive Shunt Switches;75
5.1;3.1 Broadband DC-Contact Capacitive Switch;75
5.1.1;3.1.1 Electromagnetic Design and Modeling;75
5.1.2;3.1.2 Mechanical Design;80
5.1.3;3.1.3 Experimental Results and Discussions;84
5.2;3.2 DOG Switch on Low-Resistivity Silicon Substrate;87
5.3;3.3 Summary;91
5.4;References;92
6;4 Coplanar Waveguide Transmission Line;93
6.1;4.1 Design of the Si-Core CPW;93
6.2;4.2 Losses of the Si-Core CPW;96
6.2.1;4.2.1 Conductor Loss;96
6.2.2;4.2.2 Dielectric Loss;97
6.2.3;4.2.3 Radiation Loss;98
6.3;4.3 Effect of Material Properties and Fabrication Processes;99
6.3.1;4.3.1 Effect of Different Substrate Materials;99
6.3.2;4.3.2 Effect of Different Core Materials;100
6.3.3;4.3.3 Effect of Different Fabrication Processes;101
6.4;4.4 Experimental Results and Discussions;104
6.4.1;4.4.1 Comparison Between Simulation Results and Measurement Results;105
6.4.2;4.4.2 Effect of Geometrical Parameters;107
6.4.3;4.4.3 Effect of Material Properties;108
6.5;4.5 Surface-Micromachined CPW Transmission Line;112
6.5.1;4.5.1 Characteristic Impedance and Effective Dielectric Constant;112
6.5.2;4.5.2 Losses of CPW Structure;116
6.5.3;4.5.3 Effects of Material Properties;118
6.5.4;4.5.4 Effects of Metal Thickness;119
6.5.5;4.5.5 Experimental Results and Discussions;120
6.6;4.6 Summary;122
6.7;References;122
7;5 Single-Pole-Multi-Throw Switching Circuits;125
7.1;5.1 SP2T Switching Circuit;125
7.1.1;5.1.1 Design of the In-line SP2T Switching Circuit;125
7.1.2;5.1.2 Modeling and Simulation of the SP2T Switching Circuit;126
7.1.3;5.1.3 Different Types of SP2T Switching Circuits;129
7.2;5.2 Design of the SP3T Switching Circuit;131
7.3;5.3 Design of the SP4T Switching Circuit;133
7.4;5.4 Experimental Results and Discussions;133
7.4.1;5.4.1 In-line SP2T Switching Circuit;135
7.4.2;5.4.2 Different Designs of the SP2T Switching Circuits;137
7.4.3;5.4.3 SP3T Switching Circuit;138
7.4.4;5.4.4 SP4T Switching Circuit;141
7.5;5.5 Summary;141
7.6;References;141
8;6 Tunable Electromagnetic Band Gap Bandstop Filter;143
8.1;6.1 Unloaded EBG Bandstop Filter;143
8.1.1;6.1.1 Effects of the Unloaded Square Aperture Size;144
8.1.2;6.1.2 Influence of the Transverse Slot Width;145
8.1.3;6.1.3 Influence of the Transverse Slot Length;145
8.1.4;6.1.4 Modeling of the Unloaded EBG;146
8.1.5;6.1.5 Propagation Characteristics of the Unloaded Unit EBG;149
8.2;6.2 Loaded EBG Bandstop Filter;151
8.2.1;6.2.1 Effect of the Square-Etched Hole;152
8.2.2;6.2.2 Modeling of the Loaded EBG Structure;153
8.2.3;6.2.3 Propagation Characteristics of the Loaded Unit EBG;156
8.3;6.3 Experimental Results and Discussions;158
8.3.1;6.3.1 Unloaded EBG Bandstop Filter;158
8.3.2;6.3.2 Loaded EBG Bandstop Filter;159
8.4;6.4 Design of Tunable Bandstop Filter;161
8.4.1;6.4.1 Experimental Results and Discussions;164
8.5;6.5 Summary;167
8.6;References;168
9;7 Tunable Electromagnetic Bandpass Filter and Reconfigurable Circuit;169
9.1;7.1 Theory of the FabryPerot of Tunable Filter;169
9.2;7.2 Design of the EBG Circuit;171
9.2.1;7.2.1 Capacitively Loaded Transmission Line Circuit Analysis;172
9.3;7.3 Design of FabryPerot Tunable Bandpass Filter;174
9.3.1;7.3.1 Effects of the Number of EBG Structures;176
9.3.2;7.3.2 Effect of the Defect Length;177
9.3.3;7.3.3 Effects of the Slot Dimension;178
9.3.4;7.3.4 Effect of Propagation Characteristics;179
9.4;7.4 Experimental Results and Discussions;180
9.5;7.5 Reconfigurable Switching Filter;183
9.5.1;7.5.1 Unit Reconfigurable Structure and Its Modeling;185
9.5.2;7.5.2 Propagation Characteristics;187
9.5.3;7.5.3 Effects of the Bigger Slot Width;189
9.5.4;7.5.4 Effect of the Transverse Slot Width;190
9.5.5;7.5.5 Experimental Results and Discussions;192
9.6;7.6 Summary;196
9.7;References;196
10;8 Capacitive Switching Bandpass Filters;199
10.1;8.1 Capacitance Tuning Bandpass Filter;199
10.1.1;8.1.1 Design of the Capacitance Tuning Bandpass Filter;199
10.1.2;8.1.2 Experimental Results and Discussions;203
10.2;8.2 Inductance Tuning Bandpass Filter;203
10.2.1;8.2.1 Design of the Inductance Tuning Filter;203
10.2.2;8.2.2 Experimental Results and Discussions;210
10.3;8.3 Summary;216
10.4;References;216
11;9 Substrate Transfer Process;217
11.1;9.1 Design of the Substrate Transfer Process;217
11.2;9.2 Silicon and Glass Anodic Bonding;221
11.2.1;9.2.1 Si/Thin Film/Glass Anodic Bonding Mechanism;221
11.2.2;9.2.2 Preparation of Bonding Samples;223
11.2.3;9.2.3 Experimental Results and Discussions;224
11.3;9.3 Wafer Thinning via KOH Anisotropic Etching;226
11.3.1;9.3.1 Layout Design Considerations;227
11.3.2;9.3.2 Etching Temperature Effect;229
11.4;9.4 Shadow Mask Techniques;229
11.4.1;9.4.1 Design and Fabrication of the Shadow Mask;230
11.4.2;9.4.2 Shadow Mask Applications;232
11.5;9.5 Summary;236
11.6;References;236
12;10 Surface Planarization Process;239
12.1;10.1 Surface Planarization Process;239
12.2;10.2 RF Measurement and Analysis;242
12.3;10.3 Effects of Dry Releasing of Metal Bridge;245
12.3.1;10.3.1 Etch Rate of Photoresist;245
12.3.2;10.3.2 Structural Stress;248
12.3.3;10.3.3 Characterization of Capacitive Switch;255
12.4;10.4 Effects of Surface Roughness;256
12.4.1;10.4.1 Greenwood--Williamson Model;256
12.4.2;10.4.2 Analysis of Surface Roughness Effects;257
12.4.3;10.4.3 Experimental Results and Discussions;268
12.5;10.5 Summary;273
12.6;References;273
13;Index;275
14;About the Author;280




