Lobiyal / Mansotra / Singh | Next-Generation Networks | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 638, 574 Seiten

Reihe: Advances in Intelligent Systems and Computing

Lobiyal / Mansotra / Singh Next-Generation Networks

Proceedings of CSI-2015
1. Auflage 2018
ISBN: 978-981-10-6005-2
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of CSI-2015

E-Book, Englisch, Band 638, 574 Seiten

Reihe: Advances in Intelligent Systems and Computing

ISBN: 978-981-10-6005-2
Verlag: Springer Nature Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book comprises select proceedings of the 2015 annual conference of the Computer Society of India. The books focuses on next generation networks (NGN). An NGN is a packet-based network which can provide services including telecommunication services. NGNs make use of multiple broadband, quality-of-service-enabled transport technologies in which service-related functions are independent from underlying transport-related technologies. This volume includes contributions from experts on various aspects of NGNs. The papers included cover theory, methodology and applications of ad-hoc networks, sensor networks, and the internet. The contents also delve into how the new enterprise IT landscape of cloud services, mobility, social media usage and big data analytics creates different types of network traffic to the traditional mix of in-house client-server enterprise workloads. The contents of this book will be useful to researchers and professionals alike.

Dr. D.K. Lobiyal is currently working as Professor at the School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India. He received his Ph.D. and M.Tech. (Computer Science) from the School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India in 1996 and 1991, respectively, and B.Tech. (Computer Science and Engineering) from Lucknow University, India in 1988. His research interests include Wireless Networks, Mobile Ad hoc Networks, Wireless Sensor Network, Wireless Multimedia Networks, Vehicular Ad hoc Networks (VANETs) and Natural Language Processing. Dr. Lobiyal has published papers in International journals and conferences including IEEE, Wiley & Sons, Springer, Inderscience, WSEAS, IGI Global and ACM.Prof. Vibhakar Mansotra did his Masters in Physics in 1986 and M.Phil. Crystal Growth (Physics) in 1988 and also one-year PGDCA in 1990. After completing his M.Phil. and PGDCA he Joined the Department of Computer Science and IT, University of Jammu as Ad hoc Lecturer in the year 1991 (February) and later got confirmed in the same Department in the year 1992 (October). In the year 1997, he went to the Indian Institute of Technology Delhi (IIT Delhi) for completing his M.Tech. Computer Science and completed the same in December 1998. After acquiring his M.Tech. degree from IIT Delhi, he took over as Head of the Department in April 2012 and remained in this position for three years up to April 2015. During his tenure as the Head of the Department, he contributed a lot to the growth of his Department and brought the Department on the national map as one of the best Departments in the country. During his tenure as Head he also started an M.Tech. programme in Computer Science in the Department, thereby bringing more laurels to the Department at the national level. During his tenure as Head he got the Best Teacher Award in Information Technology (IT) by Amar Ujala B-School Excellence Awards held in Bombay on 23rd November 2012 and also the Best Professor Award in Information Technology (IT) by LOKMAT National Education Leadership Awards held in Bombay on 13th February 2015. Besides his teaching achievements he has contributed extremely well to the design of new courses and programmes and has earned a name in his region. He has remained an active member of various academic bodies of the University and various neighbouring universities.Dr. Umang, IBM RAD Certified 'Associate Developer,' has completed her doctorate from University School of Information, Communications & Technology Department, Guru Gobind Singh Indraprastha University (GGSIPU), Delhi. Currently, Dr. Umang is working as an Assistant Professor at the Institute of Technology and Science, Ghaziabad, UP and has experience of more than 12 yrs in academics. She is an active researcher having interest in the area of Mobile Ad hoc Networks, Sensor Networks, Vehicular Ad hoc Networks (VANETs), Software Management and Software Engineering. She is guiding M.Tech./ Ph.D. students of various reputed universities. She has organized various conferences/seminars and faculty development programmes and has also worked as Editor and Joint Editor in Journals and Conferences. She has also authored a book titled 'Real Time System' and co-authored the title 'MCA IV Handbook' published by Pragati Publication, Meerut (UP). She is an active member of various societies and professional bodies including IEEE and a life member of the Computer Society of India (CSI). She has delivered lecture talks on the area of Information security, Mobile communications, Vehicular networks, Sensor networks, Ad hoc networks and its implementation in ns2. She has more than 40 research papers in esteemed national/international conferences and journals including ACM, IEEE, IET credited to her name and is also a reviewer of national/international journals.

Lobiyal / Mansotra / Singh Next-Generation Networks jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;The Organization of CSI-2015;9
2.1;Chief Patron;9
2.2;Patrons;9
2.3;Advisory Committee;9
2.4;Editorial Board;10
3;Contents;11
4;About the Editors;16
5;1 100 Gbps High-Speed Broadband Networks;18
5.1;Abstract;18
5.2;1 Introduction;19
5.3;2 Modulation;19
5.4;3 Dense Wavelength Division Multiplexing (DWDM);19
5.5;4 Light Source;20
5.6;5 Coherent Detection;21
5.7;6 Comparison of PM-QPSK;22
5.8;7 Conclusion;23
5.9;References;23
6;2 Performance Variation of Routing Protocols with Mobility and Scalability in MANET;25
6.1;Abstract;25
6.2;1 Introduction;26
6.3;2 Categories of Routing Protocols;26
6.3.1;2.1 On-Demand Routing Protocols;26
6.3.1.1;2.1.1 Ad Hoc On-Demand Distance Vector (AODV);27
6.3.2;2.2 Table Driven Routing Protocols;27
6.3.2.1;2.2.1 Optimized Link State Routing (OLSR);27
6.4;3 Analysis Factor in MANET;27
6.4.1;3.1 Mobility;27
6.4.2;3.2 Scalability;28
6.5;4 Performance Metrics;28
6.5.1;4.1 Average End-to-End Delay;28
6.5.2;4.2 Average Throughput;28
6.6;5 Previous Work;29
6.7;6 Problem Statement;29
6.8;7 Objective;29
6.9;8 Research Methodology;29
6.10;9 Simulation Tool;30
6.11;10 Network Model Design;30
6.11.1;10.1 Application Configuration;30
6.11.2;10.2 Profile Configuration;30
6.11.3;10.3 Mobility Configuration;32
6.12;11 Scenarios and Parameters;32
6.12.1;11.1 DSR Parameters;33
6.13;12 Performance Evaluation Metrics;33
6.14;13 Performance Comparison of Protocols;34
6.14.1;13.1 Network Delay;34
6.14.2;13.2 Throughput;35
6.15;14 Results and Conclusion;36
6.16;15 Future Work;36
6.17;References;36
7;3 Variations in Routing Protocol Resulting in Improved Energy Utilization in WSN;38
7.1;Abstract;38
7.2;1 Introduction;39
7.3;2 Problem Definition;39
7.4;3 Parameters Analyzed;41
7.4.1;3.1 Throughput;41
7.5;4 Conclusions;45
7.6;References;46
8;4 Genetic Algorithm-Based Routing Protocol for Energy Efficient Routing in MANETs;47
8.1;Abstract;47
8.2;1 Introduction;47
8.2.1;1.1 Energy Efficient Routing Protocols;48
8.3;2 Genetic Algorithm;48
8.4;3 Simulation Design and Implementation;49
8.4.1;3.1 Experimental Setup and Proposed Algorithm;49
8.4.2;3.2 Experimental Result;51
8.4.3;3.3 Cross Over Operator;51
8.5;4 Results and Discussion;52
8.6;5 Conclusion and Future Work;53
8.7;6 Figures;54
8.8;References;54
9;5 IPv6 Security Issues—A Systematic Review;55
9.1;Abstract;55
9.2;1 Introduction;55
9.3;2 IPsec;56
9.4;3 Common Security Threats in IPv4 and IPv6 Networks;57
9.4.1;3.1 Sniffing Attacks;57
9.4.2;3.2 Application Layer Attacks;57
9.4.3;3.3 Flooding Attacks;58
9.4.4;3.4 Rogue Devices;58
9.4.5;3.5 Man-in-the-Middle Attacks;58
9.5;4 IPv6 Specific Security Threats;58
9.5.1;4.1 Reconnaissance Attack;58
9.5.2;4.2 Hop-by-Hop;59
9.5.3;4.3 Routing Header Attacks;59
9.5.4;4.4 Fragmentation Header Attacks;59
9.5.5;4.5 ICMPv6 and Multicast;60
9.6;5 Security Issues Related to Transition Mechanism;60
9.6.1;5.1 Dual Stack;60
9.6.2;5.2 Tunneling;60
9.6.3;5.3 NAT-PT;61
9.7;6 Conclusion;62
9.8;References;62
10;6 Moderating Bandwidth Starvation Using PQDWRR;64
10.1;Abstract;64
10.2;1 Introduction;64
10.3;2 Queue Scheduling Mechanisms;65
10.3.1;2.1 FIFO Queuing;66
10.3.2;2.2 Priority Queuing (PQ);66
10.3.3;2.3 FQ;66
10.3.4;2.4 DWRR;66
10.4;3 Related Work;67
10.5;4 Proposed Algorithm;67
10.6;5 Simulations;68
10.7;6 Result Analysis;69
10.8;7 Conclusion and Future Scope;70
10.9;References;71
11;7 Coordinate-Based Void Detection and Recovery in WSN;72
11.1;Abstract;72
11.2;1 Introduction;72
11.3;2 Related Work;73
11.4;3 Proposed Algorithm;74
11.5;4 Simulation and Results;75
11.6;5 Conclusion and Future Scope;76
11.7;Acknowledgements;77
11.8;References;77
12;8 Optimized QoS-Based Node Disjoint Routing for Wireless Multimedia Sensor Networks;78
12.1;Abstract;78
12.2;1 Introduction;78
12.3;2 Related Work;79
12.4;3 Optimized QoS-Based Node Disjoint Routing;80
12.5;4 Simulation Environment;84
12.5.1;4.1 Simulation Parameters;84
12.5.2;4.2 Performance Metric for Simulation;85
12.5.3;4.3 Simulation Results;85
12.6;5 Conclusion;87
12.7;References;87
13;9 Review of Industrial Standards for Wireless Sensor Networks;89
13.1;Abstract;89
13.2;1 Introduction to Wireless Sensor Network (WSN);89
13.3;2 Industrial Standards for WSN;90
13.3.1;2.1 WirelessHART;91
13.3.2;2.2 ISA 100.11a;92
13.3.3;2.3 Zigbee;92
13.3.4;2.4 6LoWPAN;93
13.3.5;2.5 IEEE 802.15.4e;93
13.4;3 Comparison of Different Industrial Standards for WSN;94
13.4.1;3.1 Research Gaps;97
13.5;4 Conclusion;97
13.6;Acknowledgements;98
13.7;References;98
14;10 Fairness and Performance Evaluation of Fuzzy-Based Resource Allocator for IEEE 802.16 Networks;100
14.1;Abstract;100
14.2;1 Introduction;100
14.3;2 Related Work;101
14.4;3 Proposed System;102
14.5;4 Results and Performance Evaluation;103
14.6;5 Conclusion;107
14.7;References;107
15;11 Intrusion Detection and Recovery of MANET by Using ACO Algorithm and Genetic Algorithm;108
15.1;Abstract;108
15.2;1 Introduction;108
15.3;2 Background;109
15.3.1;2.1 Intrusion Detection System (IDS);109
15.3.2;2.2 Ant Colony Optimization (ACO);110
15.3.3;2.3 Genetic Algorithm (GA);110
15.4;3 The Proposed Intrusion Detection and Recovery Technique;111
15.4.1;3.1 Parameter Extraction and Detection of Intrusion;111
15.4.2;3.2 Recovery of Network from Intrusion;113
15.5;4 Experimental Results;113
15.6;5 Conclusion and Future Scope;119
15.7;References;119
16;12 Avoiding Attacks Using Node Position Verification in Mobile Ad Hoc Networks;121
16.1;Abstract;121
16.2;1 Introduction;121
16.3;2 Literature Survey;122
16.4;3 Methodology;122
16.4.1;3.1 Notations Are Used in Algorithms;123
16.4.2;3.2 Position Verification;124
16.5;4 Results;125
16.6;5 Conclusion;127
16.7;References;127
17;13 Algorithm for Multi-Hop Relay in Mobile Ad Hoc Networks;129
17.1;Abstract;129
17.2;1 Introduction;129
17.3;2 Literature Review;130
17.3.1;2.1 On the Delivery Probability of Two-Hop Relay MANETs with Erasure Coding;130
17.3.2;2.2 Delay Control in MANETS with Erasure Coding and F-Cast Relay;130
17.3.3;2.3 Message Drop and Scheduling in DTNs;132
17.3.4;2.4 Delay and Capacity in Ad Hoc Mobile Networks with F-Cast Relay Algorithms;132
17.4;3 Methodology;132
17.4.1;3.1 Algorithm of Proposed System;133
17.5;4 Results;134
17.6;5 Conclusion;135
17.7;References;135
18;14 Comparative Performance of Multipath Routing Protocols in Wireless Mesh Network;137
18.1;Abstract;137
18.2;1 Introduction;137
18.3;2 Multipath Routing in WMN;138
18.4;3 Multipath Routing Protocols;139
18.5;4 Simulation Environment;141
18.6;5 Conclusion;143
18.7;References;144
19;15 Energy-Efficient Approaches in Wireless Network: A Review;145
19.1;Abstract;145
19.2;1 Introduction;145
19.3;2 Layer-Based Approaches;146
19.3.1;2.1 Physical Layer;147
19.3.2;2.2 Data Link Layer;148
19.3.3;2.3 Network Layer;149
19.3.4;2.4 Transport Layer;151
19.3.5;2.5 Application Layer;152
19.4;3 Trends;153
19.5;4 Conclusion and Future Work;154
19.6;References;154
20;16 Developing Small Size Low-Cost Software-Defined Networking Switch Using Raspberry Pi;157
20.1;Abstract;157
20.2;1 Introduction;157
20.3;2 Related Work;159
20.4;3 Steps for Developing SDN Switch;159
20.5;4 Laboratory Setup;160
20.6;5 Conclusion;162
20.7;References;162
21;17 A Timestamp-Based Adaptive Gateway Discovery Algorithm for Ubiquitous Internet Access in MANET;163
21.1;Abstract;163
21.2;1 Introduction;164
21.3;2 Related Work;165
21.4;3 Proposed Gateway Discovery Mechanism;165
21.4.1;3.1 Algorithm for Calculation of Proactive Area;166
21.4.2;3.2 Algorithm for Congestion Mitigating Gateway Selection and Discovery Scheme;167
21.5;4 Performance Evaluation;168
21.5.1;4.1 Performance Metrics;168
21.5.2;4.2 Results and Discussion;169
21.6;5 Conclusions and Future Scope;171
21.7;References;171
22;18 A Directed Threshold Signature Scheme;173
22.1;Abstract;173
22.2;1 Introduction;173
22.2.1;1.1 Paper Organization;174
22.3;2 Preliminaries: Some Basic Tools;174
22.3.1;2.1 In This Paper, We Will Use the Following Public Parameters;174
22.3.2;2.2 Schnorr’s Signature Scheme;175
22.4;3 Directed Threshold Signature Scheme;175
22.4.1;3.1 Generation of Secret Key and Secret Shares for Group;175
22.4.2;3.2 Generation of Partial Signature by Any t Signer;176
22.4.3;3.3 Verification of Digital Signature {S, W, R, M};176
22.4.4;3.4 Proof of Validity by Signature Receiver to Any Third Party C;177
22.5;4 Security Discussion;177
22.6;5 Illustration;178
22.6.1;5.1 Generation of Group Secret Key and Partial Secret Shares;178
22.6.2;5.2 Signature Generation by Any t Users;179
22.6.3;5.3 Signature Verification by B;179
22.6.4;5.4 Proof of Validity by B to Any Third Party C;179
22.7;6 Conclusion;180
22.8;References;180
23;19 Comparing Mesh Topology-Based Multicast Routing Protocols in MANETs;182
23.1;Abstract;182
23.2;1 Introduction;182
23.3;2 Mesh-Based Multicast Routing Protocols;183
23.3.1;2.1 Multicast Routing;183
23.3.2;2.2 Mesh-Based Multicast Routing;184
23.4;3 Description of Three Mesh-Based Protocols;184
23.4.1;3.1 ODMRP: On-Demand Multicast Routing Protocol;184
23.4.2;3.2 DCMP: Dynamic Core-Based Multicast Routing Protocol;184
23.4.3;3.3 CAMP: Core-Assisted Mesh Protocol;185
23.5;4 Comparing Points in the Protocols: Benefits and Limitations, Using the Simulation Model;185
23.5.1;4.1 Analyzing ODMRP;186
23.5.2;4.2 Analyzing DCMP;186
23.5.3;4.3 Analyzing C187
23.6;5 Technical Requirements for Creating a New Multicasting Protocol: A Solution;187
23.7;6 Conclusion;187
23.8;References;188
24;20 SER Performance Improvement in OFDM System Over Generalized K-fading Channel;189
24.1;Abstract;189
24.2;1 Introduction;189
24.3;2 System and Channel Model;191
24.3.1;2.1 Received Signal of OFDM Model;191
24.3.2;2.2 Model for Generalized K-fading Channel;191
24.3.3;2.3 OFDM with Repetition Codes;192
24.4;3 Simulation Results and Analysis;194
24.5;4 Conclusion;196
24.6;References;196
25;21 Automatic Classification of WiMAX Physical Layer OFDM Signals Using Neural Network;198
25.1;Abstract;198
25.2;1 Introduction;198
25.3;2 Related Work;200
25.4;3 Signal Model;202
25.5;4 Experiment and Results;205
25.5.1;4.1 Key Features;207
25.5.2;4.2 Training Phase;209
25.5.3;4.3 Testing Phase;209
25.6;5 Conclusion;212
25.7;References;213
26;22 Routing Protocols in CRAHNs: A Review;215
26.1;Abstract;215
26.2;1 Introduction;216
26.3;2 Routing Protocol in CRAHNs;216
26.4;3 Literature Survey;217
26.5;4 Research Gap;222
26.6;5 Conclusion;223
26.7;References;223
27;23 Cluster-Tree-Based Routing—A Step Towards Increasing WSN Longevity;226
27.1;Abstract;226
27.2;1 Introduction;226
27.3;2 Related Work;227
27.4;3 Conclusion;231
27.5;References;231
28;24 Performance Analysis of DTN Routing Protocol for Vehicular Sensor Networks;233
28.1;Abstract;233
28.2;1 Introduction;233
28.3;2 MaxProp Protocol;235
28.3.1;2.1 Methods for Dropping the Packets;235
28.4;3 Packet-Oriented Routing (POR) Protocol;236
28.5;4 Simulation Results and Compression Analysis;237
28.5.1;4.1 Packet Delivery Ratio;237
28.5.2;4.2 End-to-End Delay;238
28.5.3;4.3 Throughput;239
28.6;5 Conclusion and Future Work;240
28.7;References;241
29;25 Analyzing Virtual Traffic Light Using State Machine in Vehicular Ad Hoc Network;243
29.1;Abstract;243
29.2;1 Introduction;244
29.3;2 Virtual Traffic Light Protocol;245
29.4;3 Literature Review;246
29.5;4 State Machine of VTL;247
29.6;5 Conclusion and Future Scope;249
29.7;References;249
30;26 Design and Analysis of QoS for Different Routing Protocol in Mobile Ad Hoc Networks;250
30.1;Abstract;250
30.2;1 Introduction;250
30.3;2 Literature Survey;251
30.4;3 Proposed Routing Protocol Scheme;252
30.4.1;3.1 Improved-LABS;252
30.4.2;3.2 Context-Aware Adaptive Fuzzy (COAAF);252
30.4.3;3.3 Context-Aware Adaptive Service (COAAS);253
30.5;4 Results and Performance Analysis;254
30.6;5 Conclusion;255
30.7;References;255
31;27 An Agent-Based Solution to Energy Sink-Hole Problem in Flat Wireless Sensor Networks;257
31.1;Abstract;257
31.2;1 Introduction;258
31.3;2 Related Work;258
31.4;3 Proposed Work;259
31.4.1;3.1 Working Algorithm;260
31.5;4 Implementation and Results;261
31.6;5 Analytical Results;261
31.7;6 Concluding Remarks;263
31.8;References;264
32;28 Compact Low-Profile WiMAX-MIMO Antenna with Defected Ground Structure for Disaster Management;265
32.1;Abstract;265
32.2;1 Introduction;265
32.3;2 Antenna Design;267
32.4;3 Results and Discussion;268
32.4.1;3.1 Return Loss and Isolation;268
32.4.2;3.2 Radiation Pattern;269
32.4.3;3.3 Correlation Coefficient;269
32.4.4;3.4 Antenna Diversity Gain;270
32.5;4 Conclusion and Future Scope;270
32.6;References;271
33;29 A Comparative Study of Various Routing Classes and Their Key Goals in Wireless Sensor Networks;272
33.1;Abstract;272
33.2;1 Introduction;272
33.2.1;1.1 Routing Classes in WSNs;273
33.3;2 Data Centric Routing Protocols;274
33.4;3 Location-Based Routing Protocols;275
33.5;4 Hierarchical Routing Protocols;277
33.6;5 Conclusion;278
33.7;References;279
34;30 WLAN Channel Compatible Design Goal-Based Energy-Efficient Fibonacci Generator Design on FPGA;281
34.1;Abstract;281
34.2;1 Introduction;281
34.3;2 Energy-Efficient Techniques;282
34.3.1;2.1 Design Goals;282
34.3.2;2.2 Frequency Scaling;283
34.3.3;2.3 FPGA Technologies;284
34.4;3 Static Power Analysis;284
34.4.1;3.1 Static Power Consumptions at Different FPGA’s by Applying Area Reduction Design Goal;284
34.4.2;3.2 Static Power Consumptions at Different FPGA’s by Applying Balanced Design Goal;285
34.4.3;3.3 Static Power Consumptions at Different FPGA’s by Applying Power Optimization Design Goal;286
34.4.4;3.4 Static Power Consumptions at Different FPGA’s by Applying Minimum Runtime Design Goal;287
34.4.5;3.5 Static Power Consumptions at Different FPGA’s by Applying Timing Performance Design Goal;288
34.5;4 Dynamic Power Analysis;289
34.5.1;4.1 Dynamic Power Consumptions at Different FPGA’s by Applying Area Reduction Design Goal;289
34.5.2;4.2 Dynamic Power Consumptions at Different FPGA’s by Applying Balanced Design Goal;290
34.5.3;4.3 Dynamic Power Consumptions at Different FPGA’s by Applying Power Optimization Design Goal;291
34.5.4;4.4 Dynamic Power Consumptions at Different FPGA’s by Applying Minimum Runtime Design Goal;292
34.5.5;4.5 Dynamic Power Consumptions at Different FPGA’s by Applying Timing Performance Design Goal;293
34.6;5 Conclusion;294
34.7;6 Future Scope;294
34.8;References;295
35;31 NS-2-Based Analysis of Stream Control and Datagram Congestion Control with Traditional Transmission Control Protocol;296
35.1;Abstract;296
35.2;1 Introduction;297
35.2.1;1.1 Transport Layer Protocols;297
35.3;2 Simulation Result and Analysis;299
35.4;3 Conclusion;303
35.5;References;303
36;32 Wireless Power Transfer Using Microwaves;305
36.1;Abstract;305
36.2;1 Introduction;305
36.3;2 Materials and Method;307
36.4;3 Results and Discussion;308
36.5;4 Conclusion and Future Prospect;308
36.6;References;309
37;33 Performance Evaluation of AODV and DSR Routing Protocol on Varying Speed and Pause Time in Mobile Ad Hoc Networks;310
37.1;Abstract;310
37.2;1 Introduction;310
37.3;2 Related Work;311
37.4;3 Proposed Work;312
37.5;4 Simulation Results and Analysis;313
37.6;5 Conclusion;318
37.7;References;318
38;34 TCP- and UDP-Based Performance Evaluation of AODV and DSR Routing Protocol on Varying Speed and Pause Time in Mobile Ad Hoc Networks;320
38.1;Abstract;320
38.2;1 Introduction;320
38.3;2 Related Work;322
38.4;3 Research Methodology;322
38.5;4 Proposed Work;323
38.6;5 Experimental Results and Analysis;324
38.7;6 Conclusion;328
38.8;References;328
39;35 Hybrid Multi-commodity-Based Widest Disjoint Path Algorithm (HMBWDP);330
39.1;Abstract;330
39.2;1 Introduction;330
39.3;2 Existing Algorithms;331
39.3.1;2.1 Profile Based Routing [9];332
39.3.2;2.2 Main Aspects and Limitations of Profile-Based Routing;332
39.3.3;2.3 Widest Disjoint Path [10] Algorithm;333
39.4;3 Hybrid Multi-commodity-Based Widest Disjoint Path Algorithm;333
39.4.1;3.1 Problem Setup and Routing Requirements;334
39.4.2;3.2 Hybrid Multi-commodity-Based Widest Disjoint Path Algorithm;334
39.4.2.1;3.2.1 Multi-commodity Flow Preprocessing Phase;335
39.4.2.2;3.2.2 Path Selection Phase;336
39.5;4 Conclusions and Future Work;336
39.6;References;337
40;36 A Perusal of Replication in Content Delivery Network;338
40.1;Abstract;338
40.2;1 Introduction;338
40.3;2 Factors Affecting Replication;339
40.4;3 Existing Replication Strategies;340
40.5;4 Comparative Analysis;342
40.6;5 Conclusion;345
40.7;References;345
41;37 An Assessment of Reactive Routing Protocols in Cognitive Radio Ad Hoc Networks (CRAHNs);347
41.1;Abstract;347
41.2;1 Introduction;347
41.3;2 Need for Routing in CRAHNs;348
41.3.1;2.1 Routing Challenges in CRAHNs;349
41.4;3 Types of Routing Protocols in CRAHNs [5];351
41.4.1;3.1 Proactive Protocols;351
41.4.2;3.2 Reactive Protocols;351
41.4.3;3.3 Hybrid Protocols;352
41.5;4 Reactive Routing Protocol Schemes in CRAHNs;352
41.6;5 Analytic Overview;354
41.7;6 Conclusion;354
41.8;References;355
42;38 Analysis and Simulation of Low-Energy Adaptive Clustering Hierarchy Protocol;356
42.1;Abstract;356
42.2;1 Introduction;356
42.3;2 LEACH Protocol;358
42.4;3 Simulation Parameters;359
42.5;4 Results;361
42.6;5 LEACH Limitations/Assumptions;361
42.7;6 Conclusions;361
42.8;References;362
43;39 Packet Delay Prediction in MANET Using Artificial Neural Network;363
43.1;Abstract;363
43.2;1 Introduction;363
43.3;2 Background;364
43.4;3 Data Collection;365
43.5;4 ANN Model Development;365
43.6;5 Results and Discussion;366
43.7;6 Conclusion and Future Work;368
43.8;References;368
44;40 Detection of Hello Flood Attack on LEACH in Wireless Sensor Networks;370
44.1;Abstract;370
44.2;1 Introduction;371
44.3;2 LEACH and Its Phases;371
44.4;3 Attacks on LEACH;373
44.5;4 Hello Flood Attack;373
44.6;5 Simulation Model;374
44.6.1;5.1 Simulation Methodology;374
44.6.2;5.2 Simulation Parameters;375
44.7;6 Simulation Results;375
44.8;7 Detection Strategy and Results;377
44.9;8 Conclusion and Future Scope;379
44.10;Acknowledgment;379
45;41 Detection of Selective Forwarding (Gray Hole) Attack on LEACH in Wireless Sensor Networks;381
45.1;Abstract;381
45.2;1 Introduction;381
45.3;2 LEACH—A Hierarchical Routing Protocol;383
45.4;3 Attacks Possible on LEACH;384
45.5;4 Selective Forwarding (Gray Hole) Attack;384
45.6;5 Objectives of Work;384
45.7;6 Simulation Environment;385
45.7.1;6.1 Simulation Methodology;385
45.7.2;6.2 Simulation Parameters;386
45.8;7 Simulation Results;386
45.8.1;7.1 Performance Metrics;386
45.8.2;7.2 Packet Delivery Ratio;387
45.8.3;7.3 Packet Loss;387
45.8.4;7.4 Remaining Energy of the Network;388
45.9;8 Detection Strategy;389
45.9.1;8.1 Results of Detection;389
45.10;9 Conclusion;389
45.11;Acknowledgements;390
45.12;References;390
46;42 H-LEACH: Modified and Efficient LEACH Protocol for Hybrid Clustering Scenario in Wireless Sensor Networks;391
46.1;Abstract;391
46.2;1 Introduction;391
46.3;2 LEACH Protocol;392
46.4;3 Literature Survey;393
46.5;4 H-LEACH: Proposed Protocol;394
46.6;5 Limitations and Assumptions;396
46.7;6 Conclusion and Future Scope;399
46.8;References;399
47;43 Implementing Chaotic and Synchronization Properties of Logistic Maps Using Artificial Neural Networks for Code Generation;401
47.1;Abstract;401
47.2;1 Introduction;401
47.3;2 Theoretical Considerations;403
47.3.1;2.1 Logistic Map as Chaos Generator;403
47.3.2;2.2 Synchronization in Logistic Maps;403
47.3.3;2.3 Artificial Neural Network (ANN);404
47.4;3 Proposed Method of Using ANN-Aided Chaotic Sequence Generation Using Synchronized Logistic Maps;406
47.5;4 Experimental Details and Results;407
47.6;5 Conclusion;410
47.7;References;410
48;44 Enhancement of LAN Infrastructure Performance for Data Center in Presence of Network Security;411
48.1;Abstract;411
48.2;1 Introduction;411
48.3;2 Analysis of LAN;413
48.3.1;2.1 Assessment of Available LAN Technologies;413
48.3.2;2.2 Performance Analysis of Traffic Intensive Networks;414
48.3.3;2.3 Performance and Security Concerns;414
48.4;3 Designing of LAN;415
48.5;4 Implementation of LAN;417
48.6;5 Result Analysis of LAN;421
48.7;6 Conclusion;423
48.8;7 Future Scope;423
48.9;References;424
49;45 High-Speed TCP Session Tracking Using Multiprocessor Environments;425
49.1;Abstract;425
49.2;1 Introduction;426
49.3;2 Related Work;427
49.4;3 Proposed System Architecture;428
49.4.1;3.1 Maintaining Connection Records and Packet Flow;428
49.4.2;3.2 Data Flow;430
49.5;4 Parallelism;431
49.6;5 Experimental Results;432
49.7;6 Conclusion and Future Work;434
49.8;References;434
50;46 Integrated Next-Generation Network Security Model;436
50.1;Abstract;436
50.2;1 Introduction;436
50.3;2 Next-Generation Intrusion Prevention System;437
50.3.1;2.1 Need for NGIPS;438
50.3.2;2.2 Characteristics of NGIPS;438
50.4;3 Network Breach Exposure System;440
50.5;4 Cloud Antivirus;443
50.6;5 Anti-spam;445
50.7;6 Personalized Content Filtering;447
50.8;7 SPARTA;449
50.9;8 MONICAN;452
50.9.1;8.1 General Management;452
50.9.2;8.2 Network Routing and Services;453
50.9.3;8.3 Network Device Management;453
50.9.4;8.4 Threat Protection;453
50.9.5;8.5 Authentication;454
50.10;9 Integrated Approach;454
50.11;10 Conclusion and Future Work;454
50.12;References;455
51;47 Reliable Data Delivery Mechanism for Mobile Ad Hoc Network Using Cross-Layer Approach;457
51.1;Abstract;457
51.2;1 Introduction;457
51.3;2 Related Work and Motivation;458
51.4;3 Network Model and Assumptions;459
51.5;4 The Cross-Layer Technique;459
51.5.1;4.1 Buffering of Packets at the Transport Layer;460
51.6;5 Congestion Detection in Proposed Cross-Layer Design;461
51.7;6 Detection of Congestion Level;462
51.8;7 Performance Evaluation;463
51.9;8 Conclusion;466
51.10;References;466
52;48 Stable Period Extension for Heterogeneous Model in Wireless Sensor Network;468
52.1;Abstract;468
52.2;1 Introduction;469
52.3;2 Literature Review;469
52.4;3 Heterogeneity-Based Network Model;471
52.5;4 Protocol Description;472
52.6;5 Performance Evaluation;473
52.7;6 Conclusion;475
52.8;References;475
53;49 Congestion Control in Vehicular Ad Hoc Network: A Review;477
53.1;Abstract;477
53.2;1 Introduction;477
53.2.1;1.1 Characteristics of VANETs [6, 8, 9];478
53.2.2;1.2 Challenges in Vehicular Ad Hoc Network [10];478
53.2.3;1.3 Applications of VANETs [10, 13];478
53.3;2 Congestion Control;479
53.3.1;2.1 Congestion Detection Component;479
53.3.2;2.2 Congestion Control Component;479
53.4;3 Review of Congestion Control Techniques for VANETs;480
53.4.1;3.1 The Congestion Detection Techniques;480
53.4.1.1;3.1.1 The Measurement-Based Congestion Detection Techniques;480
53.4.1.2;3.1.2 Event-Driven Detection Technique;480
53.4.1.3;3.1.3 MAC Blocking Detection Technique;481
53.4.2;3.2 Congestion Control Techniques;481
53.5;4 Conclusion;482
53.6;References;482
54;50 Mathematical Model for Wireless Sensor Network with Two Latent Periods;485
54.1;Abstract;485
54.2;1 Introduction;486
54.3;2 Model Formulation;487
54.4;3 Local Stability and Existence of Positive Equilibrium;488
54.5;4 Stability of the Worm-Free Equilibrium Stage;488
54.6;5 Simulation and Result;489
54.7;6 Conclusion;491
54.8;References;491
55;51 A Review of Underwater Wireless Sensor Network Routing Protocols and Challenges;493
55.1;Abstract;493
55.2;1 Introduction;494
55.3;2 Related Work;494
55.4;3 Characteristics of Channels;495
55.5;4 Differences in Underwater Sensor Network and Terrestrial Networks;495
55.6;5 Routing Protocols;496
55.6.1;5.1 Vector-Based Forwarding (VBF);496
55.6.2;5.2 Distributed Minimum-Cost Clustering Protocol (DDD);496
55.6.3;5.3 Energy Optimized Path Unaware Layered Routing Protocol (E-PULRP);496
55.6.4;5.4 A Mobile Delay-Tolerant Approach (MCCP);496
55.6.5;5.5 DBMR Protocol;497
55.6.6;5.6 GPS-Free Routing Protocol;497
55.6.7;5.7 Void-Aware Pressure Routing;497
55.6.8;5.8 Multi-level Routing Protocol;497
55.7;6 Conclusions;498
55.8;7 Future Scope;499
55.9;References;499
56;52 A Multi-metric-Based Algorithm for Cluster Head Selection in Multi-hop Ad Hoc Network;501
56.1;Abstract;501
56.2;1 Introduction;502
56.3;2 Related Work;502
56.4;3 Proposed Work;503
56.4.1;3.1 Node Neighbour;503
56.5;4 Node Lifetime;504
56.5.1;4.1 Node Stability;505
56.6;5 Analytical Model;506
56.6.1;5.1 Node Neighbour Matrix;506
56.6.2;5.2 Node Energy Information;507
56.6.3;5.3 Node Stability Matrix;507
56.6.4;5.4 Node Weight Matrix;507
56.7;6 Explanatory Example;508
56.8;7 Simulation Model and Performance Analysis;509
56.8.1;7.1 Energy Consumption;510
56.8.2;7.2 Throughput;510
56.8.3;7.3 Control Overhead;510
56.9;8 Conclusion and Future Work;511
56.10;References;512
57;53 Maximizing Lifetime of Wireless Sensor Network by Sink Mobility in a Fixed Trajectory;513
57.1;Abstract;513
57.2;1 Introduction;514
57.3;2 Related Work;514
57.4;3 Proposed Work;516
57.4.1;3.1 Route Discovery Phase;519
57.5;4 System Simulation and Performance Analysis;520
57.5.1;4.1 The Following Metrics Are Used to Evaluate the Performance;522
57.6;5 Conclusion and Future Work;523
57.7;References;523
58;54 Secure Communication in Cluster-Based Ad Hoc Networks: A Review;525
58.1;Abstract;525
58.2;1 Introduction;525
58.3;2 Security Aspects in Mobile Ad Hoc Networks;526
58.3.1;2.1 Security Challenges and Requirement;526
58.3.2;2.2 Security Attacks on Protocol Stacks;527
58.3.3;2.3 Security Measures to Avoid Attacks in Mobile Ad Hoc Network;527
58.4;3 Security Enhancement Through Cluster Heads;527
58.5;4 Comparative Analysis;530
58.6;5 Conclusion and Future Scope;532
58.7;Acknowledgements;532
58.8;References;532
59;55 Cluster Head Selection and Malicious Node Detection in Wireless Ad Hoc Networks;534
59.1;Abstract;534
59.2;1 Introduction;534
59.3;2 Cluster Head Formation;536
59.4;3 State-of-the-Art Scenario and Proposed Algorithm;537
59.5;4 Conclusion;540
59.6;References;540
60;56 Attack in Smartphone Wi-Fi Access Channel: State of the Art, Current Issues, and Challenges;542
60.1;Abstract;542
60.2;1 Introduction;542
60.3;2 Attack on Smartphone Wi-Fi;543
60.4;3 Role of DDoS Attack in Smartphone Wi-Fi;544
60.5;4 Defense Mechanisms Against DDoS Attack on Smartphone Wi-Fi Access Channel;545
60.6;5 Conclusion;547
60.7;References;548
61;57 Evaluating Pattern Classification Techniques of Neural Network Using k-Means Clustering Algorithm;549
61.1;Abstract;549
61.2;1 Introduction;550
61.3;2 Implementation and Simulation Design;564
61.3.1;2.1 Experiments;565
61.4;3 Results and Discussion;567
61.5;4 Conclusion;573
61.6;References;573



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.