E-Book, Englisch, 151 Seiten
Reihe: Springer Theses
Maasch Tunable Microwave Metamaterial Structures
1. Auflage 2016
ISBN: 978-3-319-28179-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 151 Seiten
Reihe: Springer Theses
ISBN: 978-3-319-28179-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book presents original findings on tunable microwave metamaterial structures, and describes the theoretical and practical issues involved in the design of metamaterial devices. Special emphasis is given to tunable elements and their advantages in terms of feeding network simplification. Different biasing schemes and feeding network topologies are presented, together with extensive prototype measurements and simulations. The book describes a novel, unique solution for beam steering and beam forming applications, and thus paves the way for the diffusion of new agile communication system components. At the same time, it provides readers with an outstanding and timely review of wave propagation in periodic structures, tunability of metamaterials and the technological constraints that need to be considered in the design of reconfigurable microwave components.
Autoren/Hrsg.
Weitere Infos & Material
1;Parts of this thesis have been published in the following journal articles:;6
2;Supervisor's Foreword;8
3;Acknowledgments;10
4;Contents;11
5;About the Author;13
6;Symbols;14
7;1 Introduction;17
7.1;References;19
8;2 Wave Propagation in Periodic Structures;22
8.1;2.1 Material Parameters of Distributed Periodic Structures;22
8.2;2.2 Dispersion Functions and Transmission Line Model;24
8.3;2.3 Causality and Its Consequences on Dispersion;29
8.3.1;2.3.1 Application to Different Unit Cell Configurations;32
8.3.2;2.3.2 Kramers--Kronig Relation for Phase Reconstruction;37
8.4;2.4 Effective Material Parameters of Discrete Periodic Structures;39
8.5;References;48
9;3 Implementation of Three-Dimensional Lorentz-Drude-Materials;50
9.1;3.1 Wire Lattice;50
9.2;3.2 Split-Ring Resonator;53
9.3;3.3 Hollow Waveguides;58
9.4;References;61
10;4 Extraction of Dispersion Parameters;63
10.1;4.1 Extraction from Scattering Parameters;63
10.1.1;4.1.1 Nicolson--Ross--Weir Extraction Method with Phase Reconstruction;63
10.1.2;4.1.2 Consideration of Higher Order Modes in Scattering Parameters;67
10.1.3;4.1.3 Eigenmode Determination from Simulated Scattering Parameters;71
10.2;4.2 Fullwave Eigenmode Computation;73
10.2.1;4.2.1 Bloch Impedance Extraction by Field Averaging;73
10.2.2;4.2.2 Farfield Computation from Eigenmode Results;77
10.3;References;85
11;5 Tunable Transmission Line Metamaterials;87
11.1;5.1 Tunable Double Series Transmission Line;88
11.2;5.2 Liquid Crystals for Voltage Tunable Components;94
11.3;5.3 Tunable Artificial Transmission Line Using Liquid Crystal;97
11.4;5.4 Tunable Open Split-Ring Resonator;102
11.5;References;106
12;6 Artificial Gradient-Index Lens;108
12.1;6.1 Gradient-Index Structures for Beam Scanning;108
12.2;6.2 Tunable Split-Ring Resonator;111
12.3;6.3 Tunable Omega Resonator;118
12.4;6.4 Tunable Fishnet Structure;124
12.4.1;6.4.1 Static Gradient-Index Fishnet Structure;127
12.4.2;6.4.2 Voltage Tunable Gradient-Index Fishnet Structure;134
12.5;References;139
13;7 Conclusion and Outlook;142
14;Appendix;146




