Buch, Englisch, 560 Seiten, Format (B × H): 186 mm x 260 mm, Gewicht: 1161 g
ISBN: 978-0-471-46960-5
Verlag: Wiley
The study of nonlinearities in physiology has been hindered by the lack of effective ways to obtain nonlinear dynamic models from stimulus-response data in a practical context. A considerable body of knowledge has accumulated over the last thirty years in this area of research. This book summarizes that progress, and details the most recent methodologies that offer practical solutions to this daunting problem. Implementation and application are discussed, and examples are provided using both synthetic and actual experimental data.
This essential study of nonlinearities in physiology apprises researchers and students of the latest findings and techniques in the field.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Systemtheorie
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
Weitere Infos & Material
Prologue xiii
1 Introduction 1
1.1 Purpose of this Book 1
1.2 Advocated Approach 4
1.3 The Problem of System Modeling in Physiology 6
1.3.1 Model Specification and Estimation 10
1.3.2 Nonlinearity and Nonstationarity 12
1.3.3 Definition of the Modeling Problem 13
1.4 Types of Nonlinear Models of Physiological Systems 13
Example 1.1. Vertebrate Retina 15
Example 1.2. Invertebrate Photoreceptor 18
Example 1.3. Volterra analysis of Riccati Equation 19
Example 1.4. Glucose-Insulin Minimal Model 21
Example 1.5. Cerebral Autoregulation 22
1.5 Deductive and Inductive Modeling 24
Historical Note #1: Hippocratic and Galenic Views of 26
Integrative Physiology
2 Nonparametric Modeling 29
2.1 Volterra Models 31
2.1.1 Examples of Volterra Models 37
Example 2.1. Static Nonlinear System 37
Example 2.2. L–N Cascade System 38
Example 2.3. L–N–M “Sandwich” System 39
Example 2.4. Riccati System 40
2.1.2 Operational Meaning of the Volterra Kernels 41
Impulsive Inputs 42
Sinusoidal Inputs 43
Remarks on the Meaning of Volterra Kernels 45
2.1.3 Frequency-Domain Representation of the Volterra Models 45
2.1.4 Discrete-Time Volterra Models 47
2.1.5 Estimation of Volterra Kernels 49
Specialized Test Inputs 50
Arbitrary Inputs 52
Fast Exact Orthogonalization and Parallel-Cascade Methods 55
Iterative Cost-Minimization Methods for Non-Gaussian 55
Residuals
2.2 Wiener Models 57
2.2.1 Relation between Volterra and Wiener Models 60
The Wiener Class of Systems 62
Examples of Wiener Models 63
Comparison of Volterra/Wiener Model Predictions 64
2.2.2 Wiener Approach to Kernel Estimation 67
2.2.3 The Cross-Correlation Technique for Wiener Kernel Estimation 72
Estimation of h0 73
Estimation of h1




