E-Book, Englisch, Band 605, 399 Seiten, eBook
Matwin / Mielniczuk Challenges in Computational Statistics and Data Mining
Erscheinungsjahr 2015
ISBN: 978-3-319-18781-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 605, 399 Seiten, eBook
Reihe: Studies in Computational Intelligence
ISBN: 978-3-319-18781-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Evolutionary Computation for Real-world Problems.- Selection of Significant Features Using Monte Carlo Feature Selection.- ADX Algorithm for Supervised Classification.- Estimation of Entropy from Subword Complexity.- Exact Rates of Convergence of Kernel-based Classification Rule.- Compound Bipolar Queries: a Step Towards an Enhanced Human Consistency and Human Friendliness.- Process Inspection by Attributes Using Predicted Data.- Székely Regularization for Uplift Modeling.- Dominance-Based Rough Set Approach to Multiple Criterion Ranking with Sorting-specific Preference Information.- On things not Seen.- Network Capacity Bound for Personalized Bipartite Page Rank.- Dependence Factor as a Rule Evaluation Measure.- Recent Results on Quantlie Estimation Methods in Simulation Model.- Adaptive Monte Carlo Maximum Likelihood.- What Do we Choose when we Err? Model Selection and Testing for Misspecified Logistic Regression Revisited.- Semiparametric Inference Identification of Block-oriented Systems.- Dealing with Data Difficulty Factors While Learning from Imbalanced Data.- Privacy Protection in a Time of Big Data.- Data Based Modeling.