Buch, Englisch, 200 Seiten, Format (B × H): 231 mm x 216 mm, Gewicht: 290 g
Buch, Englisch, 200 Seiten, Format (B × H): 231 mm x 216 mm, Gewicht: 290 g
ISBN: 978-0-12-816356-6
Verlag: Elsevier Science
Integration and Visualization of Gene Selection and Gene Regulatory Networks for Cancer Genome helps readers identify and select the specific genes causing oncogenes. The book also addresses the validation of the selected genes using various classification techniques and performance metrics, making it a valuable source for cancer researchers, bioinformaticians, and researchers from diverse fields interested in applying systems biology approaches to their studies.
Zielgruppe
<p>Bioinformaticians, Cancer Researchers, researchers interested in applying Systems Biology approaches to their studies</p><b> <p></b>Geneticists, Bioengineers, researchers interested in Machine learning, Data Mining, Bioinformatics</p>
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biowissenschaften DNA und Transgene Organismen
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Onkologie, Krebsforschung
- Naturwissenschaften Biowissenschaften Biowissenschaften Genetik und Genomik (nichtmedizinisch)
Weitere Infos & Material
1. Literature Review2. SVM-BT-RFE: An Improved Gene Selection Framework Using Bayesian T-Test Embedded in Support Vector Machine (Recursive Feature Elimination) Algorithm3. Enhanced Gene Ranking Approaches Using Modified Trace Ratio Algorithm for Gene Expression Data4. SNR-TR Gene Ranking Method: A Signal-to-Noise Ratio Based Gene Selection Algorithm Using Trace Ratio for Gene Expression Data5. Visualization of Interactive Gene Regulatory Network Using Gene Selection Techniques from Expression Data6. Conclusion and Future Work