• Neu
Monteiro / Meza | A Practical Guide to Optimization in Engineering and Data Science | E-Book | www.sack.de
E-Book

E-Book, Englisch, 325 Seiten

Reihe: Mechanical Engineering (R0)

Monteiro / Meza A Practical Guide to Optimization in Engineering and Data Science


Erscheinungsjahr 2026
ISBN: 978-3-032-04633-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 325 Seiten

Reihe: Mechanical Engineering (R0)

ISBN: 978-3-032-04633-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book offers a hands-on and comprehensive guide to optimization techniques tailored for data scientists and engineers, combining theoretical foundations with practical applications. It begins by demystifying core concepts and types of optimization, then explores their relevance across engineering and data science domains. Readers are introduced to essential mathematical tools, single- and multi-objective optimization methods, and a wide range of algorithms including gradient-based techniques, evolutionary strategies, and swarm intelligence. The book also lists real-world applications across industries and provides several Python-based examples, enabling readers to implement and experiment with optimization models in practice. With its structured approach and rich set of examples, this book serves as a valuable resource for professionals and researchers seeking to apply optimization effectively in their work.

Monteiro / Meza A Practical Guide to Optimization in Engineering and Data Science jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


1. Grokking Optimization.- 2. Essential Mathematics for Optimization.- 3. Single-Objective Optimization Techniques.- 4. Metaheuristics for Single-Objective Optimization.- 5. Multi-Objective Optimization.- 6. Applications of Optimization.- 7. Practical Optimization Examples with Python.


Wellington Rodrigo Monteiro received his Ph.D. in Industrial and Systems Engineering from the Pontifical Catholic University of Parana (PUCPR), Brazil, a Master’s in Industrial and Systems Engineering from PUCPR, and a Bachelor’s in Computer Engineering from PUCPR. He has over ten years of experience working as a data scientist in large international corporations and startups. He works as a lead machine learning engineer at Nubank and as an assistant professor at PUCPR. His interests are rooted in machine learning, evolutionary algorithms, and multi-objective optimization applications in the industry.

Gilberto Reynoso Meza received his Ph.D. in Automation from the Universitat Politècnica de València (Spain) and his B.Sc. (2001) in Mechanical Engineering from the Tecnológico de Monterrey, Campus Querétaro (Mexico). Currently, he is with the Industrial and Systems Engineering Graduate Program (PPGEPS) of the Pontifical Catholic University of Parana (PUCPR), Brazil, as an associate Professor. His main research interests are computational intelligence methods for control engineering, multi-objective optimization, many-objectives optimization, multi-criteria decision-making, evolutionary algorithms, and machine learning.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.