Buch, Englisch, Band 106, 185 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 318 g
Reihe: Lecture Notes in Chemistry
A Student's Guide to Understanding Electronic Structure
Buch, Englisch, Band 106, 185 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 318 g
Reihe: Lecture Notes in Chemistry
ISBN: 978-3-030-62998-4
Verlag: Springer International Publishing
This book addresses the nature of the chemical bond in inorganic and coordination compounds. In particular, it explains how general symmetry rules can describe chemical bond of simple inorganic molecules. Since the complexity of studying even simple molecules requires approximate methods, this book introduces a quantum mechanical treatment taking into account the geometric peculiarities of the chemical compound. In the case of inorganic molecules, a convenient approximation comes from symmetry, which constrains both the electronic energies and the chemical bonds. The book also gives special emphasis on symmetry rules and compares the use of symmetry operators with that of Hamiltonian operators. Where possible, the reactivity of molecules is also rationalized in terms of these symmetry properties. As practical examples, electronic spectroscopy and magnetism give experimental confirmation of the predicted electronic energy levels.
Adapted from university lecture course notes, this book is the ideal companion for any inorganic chemistry course dealing with group theory.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Quantenphysik Atom- und Molekülphysik
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Naturwissenschaften Chemie Analytische Chemie Magnetresonanz
- Naturwissenschaften Chemie Anorganische Chemie
- Naturwissenschaften Chemie Chemie Allgemein Chemometrik, Chemoinformatik
Weitere Infos & Material
1. The electronic structure determination and its symmetry aspects
1.1 Variation method (MO LCAO)
1.2 Hückel requirements
1.2.1The case of the allyl anion (MO-LCAO of p orbitals)
1.3 Extended Hückel procedure
1.4 Group Theory
1.4.1 Rules for the elements which constitute a group
1.4.2 Group multiplication tables
1.4.3 Representation of symmetry operations by matrices
1.5 Irreducible representations
1.5.1 Character Table of groups and reading examples
1.5.2 Factoring the total representation into irreducible representation
1.5.3 Relation between molecular wave functions and irreducible representations
1.5.4 Obtaining molecular orbitals with a given symmetry
2 . Symmetry orbitals for different di- and poly-atomic molecules
2.1 Homonuclear diatomic molecules A-B of the first row
2.2 Water as an example of triatomic molecule
2.3 Ammonia as an example of tetratomic molecule
2.4 Methane as an example of pentatomic molecule
2.5 Considerations about the models of chemical bond in use before the adoption of the symmetry molecular orbital model.
3. Perturbation theory
3.1 Interelectronic repulsion perturbation
3.2 Spin-orbit coupling perturbation
3.3 Crystal field perturbation
3.3.1- Use of group theory to predict the orbital spitting in a given symmetry
3.4 Electronic absorption bands
3.5 Crystal-field limitations
3.6 Effect of distortion from cubic symmetry
3.7 Table of characters to be used in the molecules reported in the text
4. Magnetism
4.1 Interaction between electrons and magnetic field
4.2 Magnetic susceptibility expression for S=1/2
4.3 Electron spin resonance
4.3.1 Hyperfine Nuclear Interaction
4.3.2 Hyperfine interaction by quantum mechanical approach
4.3.3 The electronic interaction with the magnetic field in oriented systems
4.3.4 The origin of the g anisotropic behaviour
4.3.5 g expressions for a d electronic configuration in tetragonal symmetry field
4.3.6 g tensor dependence on the energy level trend of the paramagnetic centres
5. Use of symmetry properties to describe the electronic structure of coordination compounds and minerals
5.1 Case studies




