N. Ngatched / Woungang / Tapamo | Pan-African Artificial Intelligence and Smart Systems | Buch | 978-3-031-94438-3 | www.sack.de

Buch, Englisch, 388 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

N. Ngatched / Woungang / Tapamo

Pan-African Artificial Intelligence and Smart Systems

Third Pan-African Conference, PAAISS 2024, Durban, South Africa, December 4-6, 2024, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-3-031-94438-3
Verlag: Springer

Third Pan-African Conference, PAAISS 2024, Durban, South Africa, December 4-6, 2024, Proceedings, Part II

Buch, Englisch, 388 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 616 g

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

ISBN: 978-3-031-94438-3
Verlag: Springer


This two-volume set LNICST 631 & 632 constitutes the proceedings of the Third Pan-African Conference on Pan-African Intelligence and Smart Systems, PAAISS 2024, which was held in Durban, South Africa, during December 4–6, 2024.

The 39 full papers presented in this volume were carefully reviewed and selected from 103 submissions. They are organized according to the following topics:   Part-I : Artificial Intelligence in Medicine; Smart Systems Enabling Technologies; and Artificial Intelligence-Enabled Communication Systems.
Part-II : Artificial Intelligence Theory and Methods; Artificial Intelligence and Smart Systems; Remote sensing and Artificial Intelligence.


N. Ngatched / Woungang / Tapamo Pan-African Artificial Intelligence and Smart Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Artificial Intelligence Theory and Methods.

.- Scalable XAI: Towards Explainable Machine Learning Models in Distributed Systems.

.- An Ensemble of Yolov5 Models in Real-time Object Detection in Low Resource Settings.

.- Hybridizing Deep Neural Networks and Machine Learning models for Natural Scene Image Classification.

.- Ensemble CNNs for Solar Flare Image Classification.

.- Natural Language Processing in Automatic Grading of Assessments in Higher Education: A Systematic Literature Review.

.- An Attention-based Deep Learning Model for Term Extraction from Text Using BERT.

.- Artificial Intelligence and Smart Systems.

.- Temporal Analysis of Social Concerns on African Social Media: Insights from Topics, Themes, and Sentiments.

.-  Real-Time Object Detection using an Ensemble of One Stage and Two Stage Object Detection Models with Dynamic Fine-tuning using Kullback-Leibler Divergence.

.-  Hybrid Approach For Image Processing Based On Convolutional Neural Network In Facial Recognition System.

.- Network Anomaly Detection System Using An Attention-Based GNN.

.-  Truckchain: A Blockchain-Powered IoT Real-Time Tracking System for Fuel Supply Chain Management.

.-  Food Safety 4.0: The Future of Food Safety Leveraging Industry 4.0 Technologies.

.-  Soil Drainage Classification Using Machine Learning Models: A Comparative Study.

.- A Comparative Analysis of FA1?3 and L´evy-Flight Based FA1?3 With Applications In Credit Card Fraud Using SMOTE Data Augmentation.

.- Juro: A Retrieval-Augmented Generation AI Chatbot for Enhancing Legal Information Access in Resource-Constrained Settings.

.-  Campus WiFi Demand Prediction: A Case Study on KNUST Campus.

.- Remote sensing and Artificial Intelligence.

.-  A Particle Swarm Optimization-Long-Short Term Memory (PSO-LSTM) Hybrid Model for Forecasting Global Horizontal Solar Radiation.

.-  Modelling Road Networks with Node Structural Features and Graph Convolutional Networks.

.-  Leveraging Machine Learning and Climate Data for Enhanced Annual Crop Production Forecasts in Senegal.

.- Road Obstacle Detection Using YOLO Algorithm based on Attention Mechanism.

.- Machine Learning-Based System for Automated Crop Damage Detection and Classification in Insurance Claims.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.