Nagy | Fundamentals of Tank and Process Equipment Design | Buch | 978-3-031-31225-0 | www.sack.de

Buch, Englisch, 248 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 606 g

Reihe: Foundations of Engineering Mechanics

Nagy

Fundamentals of Tank and Process Equipment Design


1. Auflage 2023
ISBN: 978-3-031-31225-0
Verlag: Springer International Publishing

Buch, Englisch, 248 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 606 g

Reihe: Foundations of Engineering Mechanics

ISBN: 978-3-031-31225-0
Verlag: Springer International Publishing


This book offers a comprehensive guide to the design and construction of process equipment and storage tanks. It covers the theoretical fundamentals of calculation methods and dimensioning techniques used in the design process, as well as the interpretation and evaluation of finite element examination results for stress concentrating cross-sections. Additionally, the book showcases corrosion-proof design through real-world examples.

 

All measurement and calculation results presented in the book are based on the author's original research work.


Nagy Fundamentals of Tank and Process Equipment Design jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


Contents

Foreword  5

1. Design methods, design guidelines 6

1.1. Equipment and storage tank loads, classification and requirements. 6

1.2. Impact and consideration of loads in design. 7

2. Corrosion loads, corrosion resistance, corrosion-proof design. 13

2.1. Definition of corrosion. 13

2.2. Electrochemical corrosion. 13

2.2.1. Manifestations ad types of electrochemical corrosion. 15

2.3 Chemical corrosion and its types. 21

2.4. Corrosion prevention, corrosion protection. 23

2.4.1. Corrosion prevention by surface protection. 24

2.4.1.1. Lined equipment design and construction. 25

2.4.1.2. Design and construction of equipment with coating layer 32

3. Dimensioning of process equipment and storage tanks.Dimensioning by taking  membrane stresses into account 47  

3.1. Determination of allowable stress. 47

3.2. Membrane stress state of equipment and storage tanks with axially symmetrical geometry. 49

3.2.1. Structural model 50

3.2.2. Membrane edge forces, membrane elongations. 51

3.2.3. Membrane stress state equilibrium equations. 53

3.3. Dimensioning by taking vapour pressure into account 54

3.3.1. Dimensioning the cylindrical part of the vessel 56

3.3.2. Dimensioning spherical tanks and hemispherical pressure vessel ends. 58

3.3.3. Dimensioning conical pressure vessel ends. 60

3.4 Dimensioning by taking hydrostatic pressure, mass forces, environmental impacts   (snow, wind), and centrifugal force

fields into account 62

3.4.1. Dimensioning cylindrical fluid tanks with a conical pressure vessel end. 62

3.4.2. Dimensioning the cylindrical part of fluid tanks with large diameter 66

3.4.3 Dimensioning cylindrical centrifuges. 71

3.4.4. Dimensioning tower structures exposed to environmental impacts. 76

3.4.5. Dimensioning outdoor spherical tanks with large diameter 81

3.4.5.1 Membrane stresses caused by fluid charge. 82

3.4.5.2 Membrane stresses caused by snow load. 85

3.4.5.3 Membrane stresses caused by shell mass. 86

3.4.5.4 Membrane stresses caused by wind pressure. 88

3.4.5.5 Determining the resultant stress state; dimensioning spherical tanks exposed to

environmental impacts. 93

4. Dimensioning equipment loaded by external pressure. 95

4.1. Dimensioning cylindrical shells and conical pressure vessel ends for external pressure. 97

4.2. Dimensioning doubly curved pressure vessel ends for external pressure. 103

5. Bending stress state of axi-symmetrical shells. Strength analysis by taking   bending stresses into account 105

5.1. Axially symmetrical bending stress state of cylindrical shells. 108

5.1.1. Bending stress state of cylindrical shells loaded by shearing force at the rim. 112

5.1.2. Bending stress state of cylindrical shells loaded by moment at the rim. 114

5.1.3. Bending stress state of cylindrical shells loaded by shearing force at the main circle. 115

5.2. Examination of shell connections. 117

5.2.1. Strength tests of cylinder – cone connections. 119

5.2.2. Strength tests of cylinder – hemisphere connections. 126

6. Strength tests of pressure vessel ends, nozzle and support environments 130

6.1. Pressure vessel ends. 131

6.1.1. Stress states and dimensioning of elliptical pressure vessel ends. 135

6.1.2. Stress states and dimensioning of torispheric pressure vessel ends. 137

6.2. Design of openings on cylindrical shells and pressure vessel ends. 141

6.3. Strength tests of the support environment 157

6.3.1. Strength tests of the support environment of spherical tanks. 165

6.3.1.1. Distribution of normal force  to rigid load transfer cylinders. 168

6.3.1.2. Determining nozzle loads caused by bending moment .... 169

6.3.1.3. Distribution of tangential force  to bolster plate fillet welds. 169

6.3.1.4. Stress state caused by rigidly installed cylindrical nozzle loaded by normal force. 171

6.3.1.5. Stress state caused by rigidly installed cylindrical nozzle loaded by shearing force. 174

6.3.1.6 Numerical tests and results. 177

7. Strength test and dimensioning on leak tightness of flange joints 181

7.1. Engineering design of pipeline and equipment flange joints. 181

7.2. Internal loads of flange structure. 189

7.2.1. Flange joint operation under simultaneous heat and mechanical load. 196

7.2.1.1. Determining gasket load drop  in case of ideally elastic gasket model 199

7.2.1.2. Stress state of the shell connected to the flange ring. 208

7.2.1.3. Determining gasket load drop  in case of non-linear gasket model 210

7.2.1.4. Viscoelastic model for determining gasket load reduction ..... 213

7.2.2. Tests and calculations to verify the model 217

7.2.2.1. Tests to verify the accuracy of the viscoelastic gasket model 217

7.2.2.2. Numerical examination of the loosening process caused by internal pressure. 227

7.2.3. Dimensioning on leak tightness of flange joints exposed to simultaneous heat and mechanical load. 234

8. Investigation of stress concentrating cross-sections using the finite element method. 238

8.1 Defining material law to serve as a basis for finite element calculations. 240

8.1.1 Specimen-level tests. 240

8.1.2. Structural tests. 247

8.2 Evaluation method for elastic-plastic finite element calculations. 251

8.3 Numerical tests and results. 254

REFERENCES. 259

Annex. 267


Andras Nagy has over 35 years of research and academic work in the field of mechanical engineering training specialized in the chemical industry.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.