Nuyens / Cools | Monte Carlo and Quasi-Monte Carlo Methods | Buch | 978-3-319-33505-6 | sack.de

Buch, Englisch, Band 163, 622 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 10756 g

Reihe: Springer Proceedings in Mathematics & Statistics

Nuyens / Cools

Monte Carlo and Quasi-Monte Carlo Methods

MCQMC, Leuven, Belgium, April 2014
1. Auflage 2016
ISBN: 978-3-319-33505-6
Verlag: Springer International Publishing

MCQMC, Leuven, Belgium, April 2014

Buch, Englisch, Band 163, 622 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 10756 g

Reihe: Springer Proceedings in Mathematics & Statistics

ISBN: 978-3-319-33505-6
Verlag: Springer International Publishing


This book presents the refereed proceedings of the Eleventh International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing that was held at the University of Leuven (Belgium) in April 2014. These biennial conferences are major events for Monte Carlo and quasi-Monte Carlo researchers. The proceedings include articles based on invited lectures as well as carefully selected contributed papers on all theoretical aspects and applications of Monte Carlo and quasi-Monte Carlo methods. Offering information on the latest developments in these very active areas, this book is an excellent reference resource for theoreticians and practitioners interested in solving high-dimensional computational problems, arising, in particular, in finance, statistics and computer graphics.
Nuyens / Cools Monte Carlo and Quasi-Monte Carlo Methods jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Part I Invited papers.- Multilevel Monte Carlo Implementation for SDEs driven by Truncated Stable Processes.- Construction of a Mean Square Error Adaptive Euler–Maruyama Method With Applications in Multilevel Monte Carlo.- Vandermonde Nets and Vandermonde Sequences.- Path Space Markov Chain Monte Carlo Methods in Computer Graphics.- Walsh Figure of Merit for Digital Nets: An Easy Measure for Higher Order Convergent QMC.- Some Results on the Complexity of Numerical Integration.- Approximate Bayesian Computation: A Survey on Recent Results.- Part II Contributed papers.- Multilevel Monte Carlo Simulation of Statistical Solutions to the Navier–Stokes Equations.- Unbiased Simulation of Distributions with Explicitly Known Integral Transforms.- Central Limit Theorem for Adaptive Multilevel Splitting Estimators in an Idealized Setting.- Comparison between LS-Sequences and ß -adic van der Corput Sequences.- Computational Higher Order Quasi-Monte Carlo Integration.- Numerical Computation of Multivariate Normal Probabilities using Bivariate Conditioning.- Non-nested Adaptive Timesteps in Multilevel Monte Carlo Computations.- On ANOVA Decompositions of Kernels and Gaussian Random Field Paths.- The Mean Square Quasi-Monte Carlo Error for Digitally Shifted Digital Nets.- Uncertainty and Robustness in Weather Derivative Models.- Reliable Adaptive Cubature Using Digital Sequences.- Optimal Point Sets for Quasi-Monte Carlo Integration of Bivariate Periodic Functions with Bounded Mixed Derivatives.- Adaptive Multidimensional Integration Based on Rank-1 Lattices.- Path Space Filtering.- Tractability of Multivariate Integration in Hybrid Function Spaces.- Derivative-based Global Sensitivity Measures and Their Link with Sobol’ Sensitivity Indices.- Bernstein Numbers and Lower Bounds for the Monte Carlo Error.- A Note on the Importance of Weak Convergence Rates for SPDE Approximations in Multilevel Monte Carlo Schemes.- A Strategy for Parallel Implementations of StochasticLagrangian Simulation.- A New Rejection Sampling



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.