Ohsawa / Minami | Bousfield Classes and Ohkawa's Theorem | Buch | 978-981-15-1590-3 | www.sack.de

Buch, Englisch, 435 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 769 g

Reihe: Springer Proceedings in Mathematics & Statistics

Ohsawa / Minami

Bousfield Classes and Ohkawa's Theorem

Nagoya, Japan, August 28-30, 2015
1. Auflage 2020
ISBN: 978-981-15-1590-3
Verlag: Springer

Nagoya, Japan, August 28-30, 2015

Buch, Englisch, 435 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 769 g

Reihe: Springer Proceedings in Mathematics & Statistics

ISBN: 978-981-15-1590-3
Verlag: Springer


This volume originated in the workshop held at Nagoya University, August 28–30, 2015, focusing on the surprising and mysterious Ohkawa's theorem: the Bousfield classes in the stable homotopy category SH form a set. An inspiring, extensive mathematical story can be narrated starting with Ohkawa's theorem, evolving naturally with a chain of motivational questions:

  •  Ohkawa's theorem states that the Bousfield classes of the stable homotopy category SH surprisingly forms a set, which is still very mysterious. Are there any toy models where analogous Bousfield classes form a set with a clear meaning?
  • The fundamental theorem of Hopkins, Neeman, Thomason, and others states that the analogue of the Bousfield classes in the derived category of quasi-coherent sheaves D(X) form a set with a clear algebro-geometric description. However, Hopkins was actually motivated not by Ohkawa's theorem but by his own theorem with Smith in the triangulated subcategory SH, consisting of compact objects in SH. Now the following questions naturally occur: (1) Having theorems of Ohkawa and Hopkins-Smith in SH, are there analogues for the Morel-Voevodsky A-stable homotopy category SH(k), which subsumes SH when k is a subfield of C?, (2) Was it not natural for Hopkins to have considered D(X) instead of D(X)? However, whereas there is a conceptually simple algebro-geometrical interpretation D(X) = D(X), it is its close relative D(X) that traditionally, ever since Oka and Cartan, has been intensively studied because of its rich geometric and physical information.

This book contains developments for the rest of the story and much more, including the chromatics homotopy theory, which the Hopkins–Smith theorem is based upon, and applications of Lurie's higher algebra, all by distinguished contributors.

Ohsawa / Minami Bousfield Classes and Ohkawa's Theorem jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.