Paul | Digital Computer Applications to Process Control | E-Book | sack.de
E-Book

E-Book, Englisch, 623 Seiten

Paul Digital Computer Applications to Process Control

Proceedings of the 7th IFAC/IFIP/IMACS Conference, Vienna, Austria, 17-20 September 1985

E-Book, Englisch, 623 Seiten

ISBN: 978-1-4832-9813-9
Verlag: Elsevier Book Series
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Considers the application of modern control engineering on digital computers with a view to improving productivity and product quality, easing supervision of industrial processes and reducing energy consumption and pollution. The topics covered may be divided into two main subject areas: (1) applications of digital control - in the chemical and oil industries, in water turbines, energy and power systems, robotics and manufacturing, cement, metallurgical processes, traffic control, heating and cooling; (2) systems theoretical aspects of digital control - adaptive systems, control aspects, multivariable systems, optimization and reliability, modelling and identification, real-time software and languages, distributed systems and data networks. Contains 84 papers.
Paul Digital Computer Applications to Process Control jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Digital Computer Applications to Process Control;4
3;Copyright Page;5
4;Table of Contents;10
5;Chapter 1. Theory and Application of Adaptive Control;14
5.1;INTRODUCTION;14
5.2;BASIC STRUCTURES OF ADAPTIVE CONTROL SYSTEMS;14
5.3;DESIGN OF SELF-TUNING CONTROLLERS (STC);16
5.4;DESIGN OF MODEL-REFERENCE ADAPTIVE CONTROLLERS (MRAC);17
5.5;DEVELOPMENTS IN THEORY DURING 1980-1984;19
5.6;APPLICATIONS DURING 1980–1981;20
5.7;CONCLUSIONS;22
5.8;REFERENCES;22
6;Chapter 2. The Present Status of Industrial Application of Distributed Control Systems to Chemical Process Control in Japan;32
6.1;1. HISTORY AND FEATURE OF JAPANESE DCS;32
6.2;2. PRESENT STATUS OF USE OF DCS IN JAPANES CHEMICAL INDUSTRIES;36
6.3;3. DCS APPLICATION TO CONTINUOUS PROCESS;40
6.4;4. APPLICATION OF A DCS FOR BATCH PROCESS;41
6.5;5. CONCLUSION;43
6.6;ACKNOWLEDGMENT;43
7;PART I: SUEVEY PAPERS;44
7.1;Chapter 3. Control of Complex Industrial Processes – A Survey;44
7.1.1;TOMORROW.. .OR TODAY?;44
7.1.2;BEYOND INTEGRATION;47
7.2;Chapter 4. Control of Energy and Power Systems;48
7.2.1;INTRODUCTION;48
7.2.2;GENERAL CONSIDERATION OF THE CONTROL BEHAVIOUR OF POWER SYSTEMS;48
7.2.3;DETAILED CONSIDERATION OF THE DYNAMIC INTERACTION BETWEEN POWER PLANTS, TRANSMISSION NETWORT AND LOADS;51
7.2.4;ORIGIN OF POWER SYSTEM OSCILLATION AND POSSIBLE COUNTERMEASURES;53
7.2.5;MULTIVARIABLE UNIT CONTROL;56
7.2.6;STRUCTURE AND EXTENT OF POWER PLANT CONTROL EQUIPMENT;57
7.2.7;APPLICATION PROBLEMS WITH DIGITAL CONTROL SYSTEMS;58
7.2.8;RELIABILITY OF DIGITAL CONTROL SYSTEMS;60
7.2.9;CONCLUSION;61
7.2.10;LITERATURE;61
7.3;Chapter 5. Process Fault Diagnosis with Parameter Estimation Methods;64
7.3.1;1. INTRODUCTION;64
7.3.2;2. FAULT DIAGNOSIS BASED ON PROCESS PARAMETERS;65
7.3.3;3. FAULT DIAGNOSIS OF A D.C.MOTOR-CENTRIFUGAL PUMP;67
7.3.4;4. CONCLUSION;69
7.3.5;REFERENCES;69
7.4;Chapter 6. Industrial Applications of Internal Model Control;74
7.4.1;1 - NEW NEEDS AND MEANS;74
7.4.2;2 - THE INTERNAL MODEL CONTROL APPROACH;75
7.4.3;3 - STABILITY - CONTROLLABILITY;76
7.4.4;4 - SPECIFIC PROBLEMS OF INTERNAL MODEL CONTROL;76
7.4.5;5 - PRACTICAL PROBLEMS;77
7.4.6;6 - ECONOMICS;78
7.4.7;7 - FUTURE DEVELOPMENTS;78
7.4.8;CONCLUSION;79
7.4.9;REFERENCES;79
8;PART II: TUTORIAL PAPERS;82
8.1;Chapter 7. State Space Approach to Linear Computer Control;82
8.1.1;1. INTRODUCTION;82
8.1.2;2. SYSTEM STATE AND STATE EQUATIONS;82
8.1.3;3. STABILITY;85
8.1.4;4. GENERATION OF COMMAND VARIABLES;85
8.1.5;5. SYSTEM STATE VECTOR ESTIMATION;86
8.1.6;5. PRINCIPLES OF DETERMINISTIC SYNTHESIS;88
8.1.7;7. POLE ASSIGNMENT PROBLEM;88
8.1.8;8. FINITE NUMBER OF CONTROL STEPS FNCS (DEADBEAT RESPONSE);89
8.1.9;9. FEEDFORWARD CONTROLLER;90
8.1.10;10. QUADRATIC COST FUNCTIONS;92
8.1.11;REFERENCES;94
8.2;Chapter 8. Digital Simulation Methods – A Tutorial;96
8.2.1;1. INTRODUCTION;96
8.2.2;2. MATHEMATICAL MODELLING;97
8.2.3;3. NUMERICAL METHODS IN SIMULATION;99
8.2.4;4. SIMULATION LANGUAGES;102
8.2.5;5. MAN-MACHINE-PROCESS INTERFACE;103
8.2.6;6. HARDWARE FACILITIES;103
8.2.7;7. APPLICATIONS;104
8.2.8;8. FUTURE OF SIMULATION IN PROCESS CONTROL;104
8.2.9;REFERENCES;105
8.3;Chapter 9. Basics, Fundamentals and Possibilities for Digital Control;108
8.3.1;INTRODUCTION;108
8.3.2;WHAT ARE THE OBJECTIVES?;109
8.3.3;WHAT DO YOU KNOW (OR NEED TO KNOW) ABOUT THE SYSTEM?;110
8.3.4;WHICH CONTROL STRATEGIES ARE AVAILABLE?;112
8.3.5;LOOSELY COUPLED DESIGN;112
8.3.6;METHODS BASED ON A DESIRED SYSTEM RESPONSE;112
8.3.7;OPTIMAL DESIGN METHODS;113
8.3.8;SIMPLE SELF-TUNING CONTROLLER;115
8.3.9;CONCLUSIONS;116
8.3.10;REFERENCES;116
9;PART III: APPLICATION ORIENTED PAPERS;118
9.1;Chapter 10. Multivariable Control of an Ammonia Plant: Modelling and Control Theory;118
9.1.1;1. CONTROL OBJECTIVES;118
9.1.2;2. OBSERVER MODEL;118
9.1.3;3. OPEN-LOOP MODELS;119
9.1.4;4. GAIN MATRIX DESIGN;119
9.1.5;5. APPLICATION;120
9.1.6;6. CONCLUSION;120
9.1.7;ACKNOWLEDGEMENTS;120
9.1.8;REFERENCES;120
9.2;Chapter 11. Direct Digital Modelling and Control of the HCN Plant;124
9.2.1;INTRODUCTION;124
9.2.2;REFERENCES;127
9.3;Chapter 12. Digital Control of Bilinear Continuous Processes. Application to a Chemical Pilot Plant;128
9.3.1;INTRODUCTION;128
9.3.2;DISCRETE MODEL OF A CONTINUOUS BILINEAR SYSTEM;128
9.3.3;DISCRETE LINEARIZING CONTROL;129
9.3.4;A DISCRETE OBSERVER FOR CONTINUOUS BILINEAR SYSTEMS;129
9.3.5;SIMULATION RESULTS;130
9.3.6;APPLICATION TO A CHEMICAL PILOT PLANT;131
9.3.7;CONCLUSION AND PROSPECTS;131
9.3.8;ACKNOWLEDGMENTS;131
9.3.9;REFERENCES;132
9.3.10;APPENDIX;132
9.4;Chapter 13. Control of an Industrial Drum Filter by Using Adaptive Models;134
9.4.1;INTRODUCTION;134
9.4.2;DRUM FILTRATION;134
9.4.3;INSTRUMENTATION AND CONTROL;135
9.4.4;THE PROCESS MODELS;136
9.4.5;THE CONTROL MODELS;138
9.4.6;IDENTIFICATION OF DISTURBANCE MODELS;139
9.4.7;SELF-TUNING CONTROL BY ADAPTIVE MODELS;139
9.4.8;THE RESULTS ACHIEVED;140
9.4.9;DISCUSSION;140
9.4.10;CONCLUSIONS;141
9.4.11;REFERENCES;141
9.5;Chapter 14. Microcomputer Control of a Printing Ink Plant;144
9.5.1;INTRODUCTION;144
9.5.2;TECHNOLOGY AND CONTROL REQUIREMENTS;144
9.5.3;SOFTWARE SYSTEM;145
9.5.4;CONCLUSION;147
9.5.5;REFERENCES;147
9.6;Chapter 15. Optimization of a Plant for Separation of Natural Gas;150
9.6.1;INTRODUCTION;150
9.6.2;PROCESS DESCRIPTION AND MATHEMATICAL MODEL OF THE PLANT;151
9.6.3;THE OPTIMIZATION PROCEDURE;154
9.6.4;THE RESULTS;155
9.6.5;REFERENCES;156
9.7;Chapter 16. Comparison of Some Algorithms to Stabilize a Hydro Power Plant Control. A Case Study;160
9.7.1;INTRODUCTION;160
9.7.2;THE SIMULATION MODEL;160
9.7.3;RESULTS OF SIMULATION AND STABILITY ANALYSIS;161
9.7.4;COMPARISON OF CONTROL ALGORITHMS;162
9.7.5;CONCLUSIONS;163
9.7.6;REFERENCES;163
9.8;Chapter 17. An Algorithm Applicable for Digital Speed Control of Water Turbines;166
9.8.1;INTRODUCTION;166
9.8.2;THE PROCEDURE;167
9.8.3;EXAMPLE;169
9.8.4;CONCLUSION;170
9.8.5;REFERENCES;170
9.9;Chapter 18. Design of Advanced Digital Control Algorithms for Water Turbines;172
9.9.1;INTRODUCTION;172
9.9.2;MATHEMATICAL MODELS FOR WATER TURBINES;172
9.9.3;DIGITAL CONTROL ALGORITHM;173
9.9.4;INFLUENCE OF VARIABLE PLANT PARAMETERS;175
9.9.5;SUMMARY;175
9.9.6;REFERENCES;176
9.10;Chapter 19. Optimal Control Algorithm for Hydropower Plants Chain Short-term Operation;178
9.10.1;INTRODUCTION;178
9.10.2;SYSTEM CONSTRAINTS;179
9.10.3;OBJECTIVE FUNCTION;181
9.10.4;SOLUTION METHODOLOGY;181
9.10.5;APPLICATION TO THE EGYPTIAN HYDROPOWER SYSTEM;182
9.10.6;CONCLUDING REMARKS;182
9.10.7;REFERENCES;182
9.11;Chapter 20. On-line Computer Control of a Continuous Latex Reactor Train;186
9.11.1;INTRODUCTION;186
9.11.2;STATEMENT OF THE PROBLEM AND PROPOSED STRATEGY FOR ITS SOLUTION;186
9.11.3;CONVENTIONAL REACTOR TRAINS;186
9.11.4;A GENERAL APPROACH TO REACTOR DESIGN AND CONTROL;187
9.11.5;CONCLUSIONS;188
9.11.6;REFERENCES;188
9.12;Chapter 21. Computer Network for the Supervisory Control of the Natural Gas Pipeline System of Hungary;194
9.12.1;INTRODUCTION;194
9.12.2;SHORT DESCRIPTION OF THE TECHNOLOGY;194
9.12.3;FUNCTIONS OF THE CONTROL SYSTEM;195
9.12.4;SOFTWARE STRUCTURE;195
9.12.5;OPERATOR COMMUNICATION;196
9.12.6;INSTALLATION;196
9.13;Chapter 22. Improved Sliding Mode Method Applied to Digital Decoupled Water-Level Control for Two Tanks Connected with Pipes;200
9.13.1;INTRODUCTION;200
9.13.2;DESCRIPTION OF METHODOLOGY;201
9.13.3;DESCRIPTION OF CONTROL SYSTEM;202
9.13.4;EXPERIMENTAL RESULT;202
9.13.5;CONCLUSIONS;203
9.13.6;REFERENCES;203
9.14;Chapter 23. An Application of Multivariable Self-Tuning Control;208
9.14.1;INTRODUCTION;208
9.14.2;SYSTEM MODEL;208
9.14.3;SYSTEM IDENTIFICATION;209
9.14.4;CHARACTERISTICS OF PARAMETER ADAPTABILITY;210
9.14.5;SYSTEM CONTROL;210
9.14.6;THE ALGORITHM: DISCUSSION AND RESULTS;211
9.14.7;CONCLUSIONS;212
9.14.8;ACKNOWLEDGEMENTS;212
9.14.9;REFERENCES;212
9.14.10;APPENDIX 1;212
9.14.11;APPENDIX 2;213
9.14.12;MIMO DERIVATION OF THE FORGETTING FACTOR;213
9.15;Chapter 24. Multivariable Self-tuning Control of a Binary Distillation Column;220
9.15.1;INTRODUCTION;220
9.15.2;THEORY;220
9.15.3;EQUIPMENT;223
9.15.4;ALGORITHM IMPLEMENTATION;223
9.15.5;RESULTS;224
9.15.6;CONCLUSION;225
9.15.7;ACKNOWLEDGEMENT;225
9.15.8;REFERENCES;225
9.15.9;NOTATION;226
9.16;Chapter 25. Various Design aspects of Microcomputer Applications in Power Engineering;230
9.16.1;PROBLEMS OF THE USE OF MICRO COMPUTERS IN POWER ENGINEERING;230
9.16.2;EFFECTS ON DESIGN AND LAYOUT OF MICROCOMPUTER SYSTEMS;230
9.16.3;SUMMARY OF REALIZED APPLICATIONS;232
9.16.4;CONCLUSION;233
9.17;Chapter 26. A Large-scale Hierarchical Digital Control System Application to a Gas/System Combined Cycle Power Plant;234
9.17.1;INTRODUCTION;234
9.17.2;DESIGN PHILOSOPHY;235
9.17.3;CONTROL SYSTEM OF GAS/STEAM COMBINED PLANT;236
9.17.4;OVERALL COMBINATION TEST;240
9.17.5;CONCLUSION;240
9.17.6;REFERENCES;240
9.18;Chapter 27. Regulation of a Steam-Generator in an Adaptive Multivariable Way;242
9.18.1;I. INTRODUCTION;242
9.18.2;II. THE PROCESS AND ITS MODELIZATION;242
9.18.3;III. THE CONTROL-LAW;243
9.18.4;IV. THE PROCESS-CONTROL SYSTEM;244
9.18.5;V. ADAPTIVE CONTROLLER IMPLEMENTATION;245
9.18.6;VI. CONCLUSION : COMMENTS AND PROPOSITION FOR PROCESS-CONTROL SYSTEMS;246
9.18.7;REFERENCES;246
9.19;Chapter 28. Steam Superheater Control via Self-tuning Regulator;248
9.19.1;INTRODUCTION;248
9.19.2;SELF-TUNING REGULATOR WITH MULTISTEP CRITERION;248
9.19.3;CONTROL LOOP OF STEAM TEMPERATURE;250
9.19.4;ADAPTIVE CONTROL OF STEAM TEMPERATURE BEHIND SUPERHEATOR PII;250
9.19.5;ADAPTIVE CONTROL OF STEAM TEMPERATURE ON THE LAST TWO SUPERHEATORS;251
9.19.6;CONCLUSIONS;252
9.19.7;REFERENCES;252
9.20;Chapter 29. Microcomputer Control of Active Power in Industry;256
9.20.1;INTRODUCTION;256
9.20.2;CONSUMERS OPERATIONAL DATA;256
9.20.3;ALGORITHM FOR CONSUMERS RATIONAL SWITCHING-OFF;257
9.20.4;REALIZATION BY USING MICROCOMPUTER;257
9.20.5;CONCLUSION;258
9.20.6;REFERENCES;258
9.21;Chapter 30. Machine Independent Software Wiring and Programming of Distributed Digital Control Systems;260
9.21.1;INTRODUCTION;260
9.21.2;CONTROL SYSTEM INDEPENDENT SOFTWARE WIRING AND PROGRAMMING METHODS;262
9.21.3;SOFTWARE IMPLEMENTATION;262
9.21.4;HARDWARE IMPLEMENTATION;264
9.21.5;TESTING;266
9.21.6;SUMMARY AND PROSPECTS;266
9.21.7;REFERENCES;267
9.22;Chapter 31. Multi-micro Controller for Power Converters;268
9.22.1;INTRODUCTION;268
9.22.2;ARCHITECTURE;269
9.22.3;FIRING CONTROLLER;269
9.22.4;CURRENT REGULATOR;271
9.22.5;DIAGNOSTIC AND PROTECTIONS;272
9.22.6;CONCLUSIONS;273
9.22.7;REFERENCES;273
9.23;Chapter 32. Application of a Self-tuning Regulator to a Solar Power Plant;274
9.23.1;INTRODUCTION;274
9.23.2;A DESCRIPTION OF THE PLANT;274
9.23.3;THE CONTROL ALGORITHM;275
9.23.4;RESULTS;278
9.23.5;CONCLUSIONS;280
9.23.6;REFERENCIAS;280
9.24;Chapter 33. Rule Based Supervising of Power Plants by Colour Display Monitors;282
9.24.1;Introduction;282
9.24.2;Realized Graphic Information Display and interaction System;283
9.24.3;Information organization;284
9.24.4;Information acqess;286
9.24.5;Test results;287
9.24.6;Application example;287
9.24.7;Architectural and operational structure of the rule based system;288
9.24.8;Realization of the application example tc 'filter cleaning';292
9.24.9;Further application possibilities;292
9.24.10;REFERENCES;292
9.25;Chapter 34. Microprocessor-based Decoupled Control of Manipulator using Modified Model Following Method with Sliding Mode;294
9.25.1;INTRODUCTION;294
9.25.2;DESCRIPTION OF METHODOLOGY;295
9.25.3;DESCRIPTION OF CONTROL SYSTEM;296
9.25.4;EXPERIMENTAL RESULTS;297
9.25.5;CONCLUSION;297
9.25.6;ACKNOWLEDGMENT;297
9.25.7;REFERENCES;297
9.26;Chapter 35. Comparison of Digital Control Algorithms for Industrial Robots;300
9.26.1;INTRODUCTION;300
9.26.2;MODEL OF THE ROBOT;300
9.26.3;DIGITAL CONTROL ALGORITHMS;301
9.26.4;SIMULATION AND SIMULATION RESULTS;301
9.26.5;SUMMARY;302
9.26.6;REFERENCES;302
9.27;Chapter 36. Infrared Sensors for the Control and Quality Check of the Welding Process of an Adaptive Robotic System;304
9.27.1;INTRODUCTION;304
9.27.2;THE SUBSTANCE OF THE THREEDIMENSIONAL CONTROL OF THE ROBOT ACTUATOR BY THE DUPLEX PROXIMITY SENSOR;305
9.27.3;THE UTILIZATION OF THE INFRARED SENSORS IN THE CONTROL SYSTEM OF THE ROBOT;307
9.27.4;REFERENCES;310
9.28;Chapter 37. Model Reference Control of a Cement Mill;312
9.28.1;Introduction;312
9.28.2;Real-time raw mill control;312
9.28.3;Model reference control;313
9.28.4;Adaptative model reference control;313
9.28.5;Closed-loop control;314
9.28.6;Results;314
9.28.7;REFERENCES;316
9.29;Chapter 38. On-line Computer Control of Transportation Systems;318
9.29.1;INTRODUCTION;318
9.29.2;MICROPROCESSOR CONTROLLER;318
9.29.3;COMPUTATION OF SHORTEST ROUTES IN A NETWORK;320
9.29.4;PREDICTION OF TRAFFIC FLOW;320
9.29.5;ANALYSIS OF DETECTED CONFLICTS;321
9.29.6;SOLVING OF THE CONFLICT SITUATION;321
9.29.7;TRANSLATION OF THE COMPUTED ROUTES INTO ELEMENTARY COMMANDS;321
9.29.8;CONCLUSIONS;321
9.29.9;REFERENCES;321
9.30;Chapter 39. Multi-microprocessor Simulation of a Cutter Suction Dredging Ship;322
9.30.1;INTRODUCTION;322
9.30.2;THE SIMULATOR;323
9.30.3;COMPUTER IMPLEMENTATION;323
9.30.4;MULTI-MICROPROCESSOR SYSTEM;324
9.30.5;INTERACTIVE USER INTERFACE;325
9.30.6;CONCLUSIONS;327
9.30.7;ACKNOWLEDGMENT;327
9.30.8;REFERENCES;327
9.31;Chapter 40. Multi-stage Static Model of Ld-Steel Converter for High P-Content;328
9.31.1;INTRODUCTION;328
9.31.2;PROCESS DESCRIPTION;328
9.31.3;DEVELOPEMENT OF THE MODEL;330
9.31.4;THE USE OF THE MODEL IN INTERACTIVE SCHEME;334
9.31.5;CONCLUSIONS;334
9.31.6;REFERENCES;334
9.31.7;ACKNOWLEDGMENTS;334
9.32;Chapter 41. Discrete Parameter Adaptive Control of a Steel Mill Soaking Pit;336
9.32.1;INTRODUCTION;336
9.32.2;INGOT-PIT SYSTEM MODEL;336
9.32.3;DEVELOPMENT OF OPTIMAL HEATING PATTERNS;336
9.32.4;SELF-TUNING MINIMUM VARIANCE CONTROL;337
9.32.5;COMPUTER SIMULATION RESULTS;338
9.32.6;CONCLUSIONS;338
9.32.7;REFERENCES;338
9.33;Chapter 42. Model Development and Computer Control Strategies for Reheating Furnaces;342
9.33.1;INTRODUCTION;342
9.33.2;PROBLEM STATEMENT;342
9.33.3;MODEL DEVELOPMENT;343
9.33.4;VERIFICATION OF THE MODEL FROM INDUSTRIAL EXPERIMENTAL DATA;344
9.33.5;COMPUTER SIMULATIONS;344
9.33.6;MODEL BASED HEURISTIC OPTIMIZATION APPROACH;344
9.33.7;CONCLUSIONS;344
9.33.8;Reference;344
9.34;Chapter 43. Design of the Dynamics of Heat Exchanger;348
9.34.1;INTRODUCTION;348
9.34.2;A SHORT SURVEY OF STATE OF THE ART IN MODELLING OF HEAT EXCHANGERS;348
9.34.3;NONLINEAR MODEL OF THE DYNAMICS OF FLOW AND HEAT PROCESSES IN THE ELEMENTARY VOLUME;349
9.34.4;NONLINEAR MODEL OF THE DYNAMICS OF FLOW AND HEAT PROCESSES BASED ON THE TOTAL FLUID VOLUME;350
9.34.5;NONLINEAR FEEDBACK OF CONTROL MODEL AND EXTERNAL LINEARIZATION;351
9.34.6;NONLINEAR MODEL OF PRIMAR- -TO-SECONDAR CROSS-FLOW HEAT EXCHANGER;352
9.34.7;AN EXAMPLE: THE DYNAMICS OF WATER-TO-AIR CROSS-FLOW HEAT EXCHANGER;352
9.34.8;CONCLUSION;352
9.34.9;REFERENCES;353
9.34.10;NOMENCLATURE;354
9.35;Chapter 44. Digital Control of a Refrigerant Evaporator;356
9.35.1;INTRODUCTION;356
9.35.2;ANALYSIS OF THE EVAPORATION PLANT;356
9.35.3;CONTROLLER DESIGN;357
9.35.4;RESULTS UNDER VARIOUS CONDITIONS;358
9.35.5;ECONOMIC CONSIDERATIONS;358
9.35.6;CONCLUSIONS;358
9.35.7;REFERENCES;358
10;PART IV: PAPERS OF GENERAL ASPECTS;362
10.1;Chapter 45. Heuristic Adaptive Process Computer Control;362
10.1.1;INTRODUCTION;362
10.1.2;2. PROCESS OF INPUT-OUTPUT ORTHOGONALIZATION;363
10.1.3;3. MAXIMUM STABILITY MARGIN OF CONTROLLER PARAMETERS;364
10.1.4;4. APPLICATION OF THE DEGREE OF THE PROCESS OSCILLATORY BEHAVIOUR;365
10.1.5;5. CONCLUSION;367
10.1.6;REFERENCES;367
10.2;Chapter 46. Identification and Adaptive Control for Concrete Mixing Process;368
10.2.1;INTRODUCTION;368
10.2.2;PROCESS AND IDENTIFICATION;369
10.2.3;FINAL VALUE PREDICTION;369
10.2.4;CONTNOL ALGORITHM;370
10.2.5;IMPLEMENTATION;371
10.2.6;Conclusions;371
10.2.7;REFERENCE;371
10.3;Chapter 47. A Comparison of Several Multivariable Parameter Adaptive Controllers;374
10.3.1;INTRODUCTION;374
10.3.2;MULTIVARIABLE DISCRETE-TIME PLANT;374
10.3.3;CONTROLLER DESIGNS;375
10.3.4;SIMULATION RESULTS;377
10.3.5;CONCLUSIONS;377
10.3.6;REFERENCES;377
10.3.7;ACKNOWLEDGEMENTS;378
10.4;Chapter 48. Direct Adaptive Control for Multivariable Systems. A Robustness Result;382
10.4.1;INTRODUCTION;382
10.4.2;PROBLEM FORMULATION AND ROBUSTNESS THEOREM;382
10.4.3;CONCLUDING REMARKS;386
10.4.4;REFERENCES;386
10.4.5;APPENDIX;386
10.5;Chapter 49. Investigation of an Adaptive Smith Controller by Simulation;388
10.5.1;INTRODUCTION;388
10.5.2;THE SMITH PREDICTOR;388
10.5.3;SIMULATION RESULTS;390
10.5.4;CONCLUSION;391
10.5.5;REFERENCES;391
10.6;Chapter 50. A Comparison of Several Single Variable Parameter Adaptive Controllers;394
10.6.1;INTRODUCTION;394
10.6.2;DISCRETE-TIME PLANT;394
10.6.3;CONTROLLER DESIGNS;394
10.6.4;SIMULATION RESULTS;397
10.6.5;CONCLUSION;400
10.6.6;REFERENCES;400
10.6.7;ACKNOWLEDGEMENTS;401
10.7;Chapter 51. Adaptive Tracking Algorithms and their Implementation on a Signal Processor;402
10.7.1;1. INTRODUCTION;402
10.7.2;2. OVERALL DESCRIPTION OF THE CONTROL STRUCTURE AND OF ITS ADVANTAGES;402
10.7.3;3. CONTROL LAW;402
10.7.4;4. SETTING UP OF THE ADAPTIVE CONTROL SCHEME;403
10.7.5;5. SIMULATION RESULTS;404
10.7.6;6. CONCLUSION;404
10.7.7;REFERENCES;404
10.8;Chapter 52. An On-line Comparison of Two Multivariable Self-tuning Controllers;406
10.8.1;INTRODUCTION;406
10.8.2;MULTIVARIABLE SYSTEM REPRESENTATION;406
10.8.3;MULTIVARIABLE SELF-TUNING CONTROL;407
10.8.4;EXPERIMENTAL INVESTIGATION;408
10.8.5;RESULTS AND DISCUSSION;409
10.8.6;COMMENTS ON CONTRCLLER IMPLEMENTATION;410
10.8.7;CONCLUSION;411
10.8.8;ACKNOWLEDGEMENTS;411
10.8.9;REFERENCES;411
10.9;Chapter 53. A Program Structure Based on Exception Handling for Variable Structure Control Systems;414
10.9.1;INTRODUCTION;414
10.9.2;EXCEPTION HANDLING IN REAL TIME PROGRAMS;414
10.9.3;PROGRAM STRUCTURE BASED ON EXCEPTION HANDLING;416
10.9.4;VARIABLE STRUCTURE CONTROL SYSTEMS;416
10.9.5;CONCLUSIONS;418
10.9.6;REFERENCES;418
10.9.7;APPENDIX;419
10.10;Chapter 54. A Self-tuning Feedforward Controller for Mimo Discrete Time Systems;420
10.10.1;INTRODUCTION;420
10.10.2;DERIVATION OF CONTROLLER STRUCTORE;421
10.10.3;SELF-TUNING FEEDFORWARD CONTROLLER;422
10.10.4;SIMULATION RESULTS;423
10.10.5;CONCLUSIONS;423
10.10.6;REFERENCES;424
10.10.7;APPENDIX;424
10.11;Chapter 55. Adaptive Extremum Control by the Parametric Volterra Model;426
10.11.1;INTRODUCTION;426
10.11.2;THE PARAMETRIC VOLTERRA HODEL;426
10.11.3;ON-LINE, RECURSIVE IDENTIFICATION;427
10.11.4;EXTREMUM CONTROL;428
10.11.5;CONTROL STRATEGY;428
10.11.6;SIMULATIONS RESULTS;428
10.11.7;CONCLUSION;431
10.11.8;REFERENCES;431
10.12;Chapter 56. A Max-min Algorithm for an On-line DDC System;432
10.12.1;INTRODUCTION;432
10.12.2;THE QUADRATIC INDEX AND THE PROPERTIES OF WEIGHT MATRIX;432
10.12.3;PROBLEM FORMULATION;433
10.12.4;PROBLEM SOLUTION;433
10.12.5;AN EQUATION FOR THE OPTIMAL VALUE OF Q;433
10.12.6;ALGORITHMIC CONVERSION CURVE AND ORIGINATING POINT OF DECELERATION;434
10.12.7;DDC ON-LINE, REAL-TIME ALGORITHMS;435
10.12.8;CONCLUSION;435
10.12.9;ACKNOWLEDGEMENTS;435
10.12.10;REFERENCES;435
10.13;Chapter 57. A New Algorithm for State Estimator of Queue in Urban Traffic Computer Control System;438
10.13.1;INTRODUCTION;438
10.13.2;QUEUE MODEL AND MINIMUM SQUARE ERROR ESTIMATION;438
10.13.3;IMPROVED QUEUING MODEL AND STATE ESTIMATOR;440
10.13.4;PROCEDURE OF THE ALGORITHM;442
10.13.5;TEST RESULTS AND COMMENTS;442
10.13.6;CONCLUSION;442
10.13.7;REFERENCES;442
10.14;Chapter 58. Industrial Requirements for Performance Indices of Interactive Controller Design Packages;444
10.14.1;1. INTRODUCTION;444
10.14.2;2. INTERACTIVE HANDLING OF IVEPO;445
10.14.3;3. DISCUSSION OF APPROPRIATE PERFORMANCE INDICES;446
10.14.4;4. APPLICATION EXAMPLE;447
10.14.5;SUMMARY;447
10.14.6;REFERENCES;447
10.15;Chapter 59. Suboptimal Decentralized Load Frequency Control Under Nbn-Linearity and Structural Purturbation;450
10.15.1;INTRODUCTION;450
10.15.2;LOAD FREQUENCY CONTROL OBJECTIVES;450
10.15.3;CONTROLLER DESIGN USING OVERLAPPING TECHNIQUE UNDER STRUCTURAL PURTURBATION;450
10.15.4;APPLICATION TO LOAD FREQUENCY CONTROL;451
10.15.5;SIMULATION;452
10.15.6;CONCULUSION;452
10.15.7;REFERENCES;453
10.16;Chapter 60. The Development of the Software for a Microprocessor-based Multivariable Controller;456
10.16.1;INTRODUCTION;456
10.16.2;FUNCTIONAL REQUIREMENTS OF THE SOFTWARE;457
10.16.3;THE REAL-TIME EXECUTIVE;457
10.16.4;DEVELOPMENT OF THE SOFTWARE;457
10.16.5;TESTING OF THE SOFTWARE;458
10.16.6;CONCLUSIONS;459
10.16.7;ACKNOWLEDGEMENT;459
10.16.8;REFERENCES;459
10.17;Chapter 61. A Direct Adaptive Controller for Non-minimum Phase Multivariable Systems with Arbitrary Time Delays;462
10.17.1;INTRODUCTION;462
10.17.2;PARAMETRIZATION OF THE PLANT AND DESIGN OBJECTIVE;462
10.17.3;THE CONTROL LAW;463
10.17.4;MAIN PROPERTIES OF THE ADAPTIVE CONTROLLER;464
10.17.5;NECESSARY A PRIORI KNOWLEDGE;465
10.17.6;BOUNDED CONTROL INPUTS (ANTI-WIND-UP);465
10.17.7;IMPLEMENTATION;465
10.17.8;SIMULATION RESULTS;466
10.17.9;CONCLUSION;466
10.17.10;ACKNOWLEDGEMENT;467
10.17.11;REFERENCES;467
10.18;Chapter 62. An Algorithm for the Design of Pseudodecoupling Digital Controllers;468
10.18.1;I. INTRODUCTION;468
10.18.2;II. PSEUDODECOUPLING METHOD;469
10.18.3;III. A NEW ALGORITHM TO CALCULATE Mj AND Sj;470
10.18.4;IV. EXAMPLE;471
10.18.5;V. CONCLUSIONS;472
10.18.6;REFERENCES;472
10.19;Chapter 63. Computer-aided Design of Multivariable Stochastic Control Systems with A-Priori Prescribed Dynamical Properties;474
10.19.1;INTRODUCTION;474
10.19.2;THE STRUCTURE OF THE CONTROL SYSTEM;475
10.19.3;SOLUTION OF THE CONTROL PROBLEM;477
10.19.4;AN EXAMPLE;478
10.19.5;CONCLUDING REMARKS;480
10.19.6;REFERENCES;480
10.20;Chapter 64. Complete System and Signal Identification of Mimo Closed Loop Systems in the Frequency Domain;482
10.20.1;INTRODUCTION;482
10.20.2;NOTATIONS AND ASSUMPTIONS;482
10.20.3;DERIVATION OF THE COMPLETE SOLUTION FOR THE CORRELATION METHOD;483
10.20.4;SOLUTIONS FOR THE OTHER THREE METHODS;484
10.20.5;IDENTIFICATION PACKAGE IMSCLF;484
10.20.6;CONCLUSIONS;486
10.20.7;LITERATURE;486
10.21;Chapter 65. Optimal Control of Multi-time-scale Systems Through a Multi-model Representation;488
10.21.1;INTRODUCTION;488
10.21.2;SOME WELL-KNOWN RESULTS ON SINGULAR PERTURBATION METHOD;488
10.21.3;SINGULAR PERTURBATIONS AND RECIPROCAL TRANSFORMATION;489
10.21.4;APPLICATION TO DECENTRALIZED CONTROL;491
10.21.5;IMPLEMENTATION ON AN EXAMPLE;492
10.21.6;CONCLUSION;493
10.21.7;REFERENCES;493
10.22;Chapter 66. Optimization of a Chemical Plant: The Reasonableness of Stating the Problem and the Specifics of its Solution;494
10.22.1;1. INTRODUCTION;494
10.22.2;2. PROBLEM STATEMENT;494
10.22.3;3. STAGES OF SYSTEM DESIGN;495
10.22.4;4. EXPRESS-METHOD FOR ESTIMATING THE REASONABLENESS OF THE DESIGN;496
10.22.5;5. DEFINITION OP THE INITIAL SET OF LINEARIZED INSTALLATION MODELS;497
10.22.6;6. ESTIMATION OF PERMISSIBLE ERRORS IN MODELLING THE INSTALLATIONS;497
10.22.7;7. SELECTION OF THE INSTALLATION MODEL STRUCTURES;498
10.22.8;8. IDENTIFICATION OF PARAMETERS (COEFFICIENTS) OF THE INSTALLATION MODELS;499
10.22.9;CONCLUSION;500
10.22.10;REFERENCES;500
10.23;Chapter 67. Process-control Task Scheduling: A Deterministic Approach with Shared Resources;502
10.23.1;INTRODUCTION;502
10.23.2;A MODEL OF TASK EXECUTION SYSTEM;503
10.23.3;MORE ASSUMPTIONS;503
10.23.4;RESOURCE SHARING MODEL;504
10.23.5;GAIN INDICES: THE HIGH-LEVEL GOAL ATTAINMENT MEASURES;505
10.23.6;SCHEDULING OPTIMIZATION;506
10.23.7;CONCLUSION;507
10.23.8;REFERENCES;507
10.24;Chapter 68. Identification and Adaptive Control of Wiener Type Nonlinear Processes;508
10.24.1;INTRODUCTION;508
10.24.2;WlENER MODEL;508
10.24.3;IDENTIFICATION;509
10.24.4;ADAPTIVE CONTROL;511
10.24.5;CONCLUSIONS;513
10.24.6;REFERENCES;513
10.25;Chapter 69. Parameter Weighted Least Squares Fitting;516
10.25.1;I. INTRODUCTION;516
10.25.2;II. USING ESTIMATED PARAMETERS FOR CONTROL DESIGN;516
10.25.3;III. REVIEW OF THE CLASSICAL LEAST SQUARES FITTING;517
10.25.4;IV. PWLS FITTING ALGORITHM;517
10.25.5;V. IDENTIFICATION OF A SECOND ORDER SYSTEM;519
10.25.6;CONCLUSIONS;519
10.25.7;REFERENCES;519
10.26;Chapter 70. Application of Parameter Estimation Methods to Time Variant Systems;522
10.26.1;INTRODUCTION;522
10.26.2;STATEMENT OF THE PROBLEM;523
10.26.3;RECURSIVE IDENTIFICATION ALGORITHMS;523
10.26.4;RECURSIVE IDENTIFICATION BY ASTROEM AND MAYNE;524
10.26.5;DETECTION OF PARAMETER VARIATION;524
10.26.6;REACTION ON A PARAMETER VARIATION;525
10.26.7;CONCLUSIONS;526
10.26.8;REFERENCES;526
10.27;Chapter 71. Task Oriented Identification of the Process Model;528
10.27.1;INTRODUCTION;528
10.27.2;FORMULATION OF THE PROBLEM;529
10.27.3;EXAMPLES OF APPLICATIONS;530
10.27.4;NUMERICAL EXAMPLE;533
10.27.5;CONCLUSIONS;533
10.27.6;APPENDIX;534
10.27.7;REFERENCES;534
10.28;Chapter 72. Discrete Event Dynamic System Analysis Using Nonhomogeneous Elements Representation;536
10.28.1;INTRODUCTION;536
10.28.2;FUNDAMENTAL NOTIONS;536
10.28.3;ALGEBRAIC STRUCTURES;537
10.28.4;THE DEDS ANALYSIS;539
10.28.5;"MAN-MACHINE" SYSTEMS;540
10.28.6;CONCLUSION;541
10.28.7;REFERENCES;541
10.29;Chapter 73. Parallel Processing for Simulation of Dynamical Systems;542
10.29.1;INTRODUCTION;542
10.29.2;PARALLEL PROCESSING SCHEME;543
10.29.3;DISCUSSION AND CONCLUSION;547
10.29.4;ACKNOWLEDGEMENTS;547
10.29.5;REFERENCES;547
10.30;Chapter 74. Multi-stratum Recursive Linearization Prediction Method and its Application in the Oil Field;548
10.30.1;INTRODUCTION;548
10.30.2;THE MULTI-STRATUM LINEAR MODEL DESCRIPTION OF NON-LINEAR PHENOMANA;548
10.30.3;APPLICATION IN OIL FIELD;551
10.30.4;APPENDIX;551
10.30.5;REFERENCES;553
10.31;Chapter 75. How to Develop Reliable Microprocessor Software Systems for Process Control;554
10.31.1;1 Introduction;554
10.31.2;2 The software, the central problem;554
10.31.3;3 Universal development systems, the necessary aids;555
10.31.4;4 The realisation of the requirements in the CAMIC/S system;555
10.31.5;5 Experience with CAMIC/S in industrial use;558
10.31.6;APPLICATION;558
10.31.7;Summary;559
10.32;Chapter 76. A Design Method for Sampled-data Decoupled Control Systems with Multirate Sampling Periods;560
10.32.1;1. INTRODUCTION;560
10.32.2;2. PARTIAL MODEL MATCHING METHOD AND A REFERENCE MODEL;560
10.32.3;3. MULTIRATE SAMPLED-DATA I-PD CONTROL;561
10.32.4;4. SIMULATION TESTS;562
10.32.5;5. RESULTS AND DISCUSSION;563
10.32.6;6. CONCLUSION;563
10.32.7;REFERENCES;563
10.33;Chapter 77. A Flexible Real Time Concept for Various Control Requirements;568
10.33.1;INTRODUCTION;568
10.33.2;THE PACKAGE CONCEPTION;568
10.33.3;THE GENERAL MOPS REPRESENTATION;570
10.33.4;SPECIAL FEATURES;571
10.33.5;THE INTERFACE ROUTINE;572
10.33.6;A MOPS OPERATION EXAMPLE;572
10.33.7;CONCLUSIONS;573
10.33.8;REFERENCES;573
10.34;Chapter 78. A Real-time Software System for Modula-2 Programs;574
10.34.1;INTRODUCTION;574
10.34.2;TASK HANDLING;574
10.34.3;TIMING;575
10.34.4;INPUT-OUTPUT MODULES;575
10.34.5;APPLICATION;575
10.34.6;PROGRAM STRUCTURE;576
10.34.7;CONCLUSIONS;577
10.34.8;REFERENCES;577
10.34.9;APPENDIX B. PARTIAL LISTING OF APPLICATION PROGRAM;579
10.35;Chapter 79. A Workstation Concept for Computer Aided Analysis and Design of Control Systems;580
10.35.1;INTRODUCTION;580
10.35.2;KEDDC IN BRIEF;580
10.35.3;CONCURRENT USER ENVIRONMENT;581
10.35.4;INTERACTIVE OPERATION;581
10.35.5;GRAPHICS;582
10.35.6;SCREEN LAYOUT;582
10.35.7;CONCLUSIONS;582
10.35.8;REFERENCES;583
10.36;Chapter 80. A Communications Model for the CTD Interconnection Strategy;584
10.36.1;INTRODUCTION;584
10.36.2;PROCESSING ELEMENT MODEL;584
10.36.3;COMPUTATIONAL MODEL;585
10.36.4;CONCLUSIONS;586
10.36.5;REFERENCES;586
10.37;Chapter 81. Distributed On-line Digitized Control Architectures for Process Control;590
10.37.1;1. INTRODUCTION;590
10.37.2;2. DISTRIBUTED TASKS IN PROCESS CONTROL;590
10.37.3;3. ISO STANDARD PROPOSALS AND PROCESS CONTROL;591
10.37.4;4. IEEE-802 PROPOSALS AND PROCESS CONTROL;592
10.37.5;5. ENHANCEMENTS TO TRANSMISSION PROTOCOLS AT LEVEL 1 AND 2 FOR HARD REAL-TIME ENVIRONMENTS;592
10.37.6;6. HARD REAL-TIME DISTRIBUTED OPERATING SYSTEMS SERVICES;593
10.37.7;REFERENCES;594
10.38;Chapter 82. Decentralized Microprocessor Process-control System;596
10.38.1;INTRODUCTION;596
10.38.2;2. SYSTEM ARCHITECTURE;596
10.38.3;3.SMALL LOCAL AREA NETWORK OF THE SYSTEM;597
10.38.4;4. DISTRIBUTED REAL-TIME OPERATING SYSTEM;598
10.38.5;5. SYSTEM APPLIED SOFTWARE;599
10.38.6;6. COMPUTER-AIDED DESIGN OF SYSTEM APPLIED SOFTWARE;599
10.38.7;CONCLUSION;600
10.38.8;REFERENCES;600
10.39;Chapter 83. Computer Systems Communication in a Steel Works with a Standardized Network;602
10.39.1;INTRODUCTION;602
10.39.2;COMPUTER SYSTEM IN STEEL WORKS;602
10.39.3;NETWORK SYSTEM;602
10.39.4;S-NET;602
10.39.5;APPLICATION OF S-NET;603
10.39.6;FUTURE DEVELOPMENT;604
10.39.7;CONCLUSION;604
10.39.8;REFERENCES;604
10.40;Chapter 84. The Automatic Task Solution in an Information-control Complex of a Distributed System;610
10.40.1;INTRODUCTORY REMARKS;610
10.40.2;FUNCTIONAL ACTIVITY OF THE ICC OF A DISTRIBUTED SYSTEM;611
10.40.3;ILLUSTRATION OF ATSS SIMULATION;613
10.40.4;CONCLUSION;616
10.40.5;REFERENCES;617
11;Author Index;618
12;Subject Index;620


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.