Pavel | Optimal Control of Differential Equations | Buch | 978-1-138-41771-7 | sack.de

Buch, Englisch, 352 Seiten, Format (B × H): 262 mm x 186 mm, Gewicht: 794 g

Reihe: Lecture Notes in Pure and Applied Mathematics

Pavel

Optimal Control of Differential Equations


1. Auflage 2017
ISBN: 978-1-138-41771-7
Verlag: Taylor & Francis Ltd

Buch, Englisch, 352 Seiten, Format (B × H): 262 mm x 186 mm, Gewicht: 794 g

Reihe: Lecture Notes in Pure and Applied Mathematics

ISBN: 978-1-138-41771-7
Verlag: Taylor & Francis Ltd


"Based on the International Conference on Optimal Control of Differential Equations held recently at Ohio University, Athens, this Festschrift to honor the sixty-fifth birthday of Constantin Corduneanu an outstanding researcher in differential and integral equations provides in-depth coverage of recent advances, applications, and open problems relevant to mathematics and physics. Introduces new results as well as novel methods and techniques!"

Pavel Optimal Control of Differential Equations jetzt bestellen!

Zielgruppe


Professional


Autoren/Hrsg.


Weitere Infos & Material


To Constantin Corduneanu on the Occasion of His Sixty-Fifth Birthday -- Preface -- Contributors -- 1. Optimal Relaxed Controls for Nonlinear Infinite Dimensional Stochastic Differential Inclusions /N. U. Ahmed -- 2. Optimal Control Problems Governed by Volterra Integral Inclusions /Sergiu Aizicovici and Nikolaos S. Papageorgiou -- 3. Identifying the Nonlinearity in a Parabolic Boundary Value Problem /Viorel Barbu and Karl Kunisch -- 4. Optimal Control and Calculus of Variations in Loo /E. N. Barron -- 5. Optimal Control of Some Partial Differential Equations with Two Point Boundary Conditions /Zhixiong Cai, Nicolae H. Pavel, and Shih-liang Wen -- 6. Continuity of a Parametrized Linear Quadratic Optimal Control Problem /Constantin Corduneanu and S. Q. Zhu -- 7. Some Remarks on Ergodic and Periodic Control /Giuseppe Da Prato -- 8. Optimal Boundary Control of Nonlinear Parabolic Equations /H. 0. Fattorini and T. Murphy -- 9. Numerical Approximations of Solutions to Riccati Equations Arising in Boundary Control Problems for the Wave Equation /Erik Hendrikson and Irena Lasiecka -- 10. Wellposedness and Uniform Decay Rates of Weak Solutions to a von Karman System with Nonlinear Dissipative Boundary Conditions /Mary Ann Hom, Irena Lasiecka and Daniel Tataru -- 11. Optimal Control Hyperbolic Systems with Bounded Variation of Controls /Dariusz ldczak and Stanislaw Walczak -- 12. Further Regularity Properties in Quadratic Cost Problems for Parabolic Equations with Boundary Control and Non-Smoothing Final State Penalization /Irena Lasieka and Roberto Triggiani -- 13. Necessary and Sufficient Conditions for Optimality for Nonlinear Control Problems in Banach Spaces /Urszula Ledzewicz and Andrzej Nowakowski -- 14. Pareto Optimality Conditions for Abnormal Optimization and Optimal Control Problems /Urszula Ledzewicz and Heinz Schaettler -- 15. A Theory of First and Second Order Conditions for Nonregular Extremum Problems /Urszula Ledzewicz and Heinz Schaettler -- 16. Existence, Approximation, and Suboptimality Conditions for Minimax Control of Heat Transfer Systems with State Constraints /Boris S. Mordukhovich and Kaixia Zhang -- 17. Optimal Control Problems for Some First and Second Order Differential Equations /Nicolae H. Pavel, G. S. Wang, and Yong Kang Huang -- 18. A Variational Approach to Shape Optimization for the Navier-Stokes Equations /Srdjan Stojanovic and Thomas P. Svobodny -- 19. A Strong Version of the Lojasiewicz Maximum Principle /H. J. Sussmann -- 20. On the Relationship Between the Optimal Quadratic Cost Problems on an Infinite Horizon, and on a Finite Horizon with Final Time Penalization: The Abstract Hyperbolic Case /Roberto Triggiani -- 21. A Sharp Result on the Exponential Operator-Norm Decay of a Family Th(t) of Strongly Continuous Semigroups Uniformly in h /Roberto Triggiani.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.