E-Book, Englisch, 241 Seiten, eBook
Prömel / Steger The Steiner Tree Problem
2002
ISBN: 978-3-322-80291-0
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Tour through Graphs, Algorithms, and Complexity
E-Book, Englisch, 241 Seiten, eBook
Reihe: Advanced Lectures in Mathematics
ISBN: 978-3-322-80291-0
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark
In recent years, algorithmic graph theory has become increasingly important as a link between discrete mathematics and theoretical computer science. This textbook introduces students of mathematics and computer science to the interrelated fields of graphs theory, algorithms and complexity.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Weitere Infos & Material
1 Basics I: Graphs.- 1.1 Introduction to graph theory.- 1.2 Excursion: Random graphs.- 2 Basics II: Algorithms.- 2.1 Introduction to algorithms.- 2.2 Excursion: Fibonacci heaps and amortized time.- 3 Basics III: Complexity.- 3.1 Introduction to complexity theory.- 3.2 Excursion: More NP-complete problems.- 4 Special Terminal Sets.- 4.1 The shortest path problem.- 4.2 The minimum spanning tree problem.- 4.3 Excursion: Matroids and the greedy algorithm.- 5 Exact Algorithms.- 5.1 The enumeration algorithm.- 5.2 The Dreyfus-Wagner algorithm.- 5.3 Excursion: Dynamic programming.- 6 Approximation Algorithms.- 6.1 A simple algorithm with performance ratio 2.- 6.2 Improving the time complexity.- 6.3 Excursion: Machine scheduling.- 7 More on Approximation Algorithms.- 7.1 Minimum spanning trees in hypergraphs.- 7.2 Improving the performance ratio I.- 7.3 Excursion: The complexity of optimization problems.- 8 Randomness Helps.- 8.1 Probabilistic complexity classes.- 8.2 Improving the performance ratio II.- 8.3 An almost always optimal algorithm.- 8.4 Excursion: Primality and cryptography.- 9 Limits of Approximability.- 9.1 Reducing optimization problems.- 9.2 APX-completeness.- 9.3 Excursion: Probabilistically checkable proofs.- 10 Geometric Steiner Problems.- 10.1 A characterization of rectilinear Steiner minimum trees.- 10.2 The Steiner ratios.- 10.3 An almost linear time approximation scheme.- 10.4 Excursion: The Euclidean Steiner problem.- Symbol Index.




