Buch, Englisch, 376 Seiten, Format (B × H): 170 mm x 241 mm, Gewicht: 807 g
Reihe: Trends in Mathematics
New Developments Using Clifford Algebras
Buch, Englisch, 376 Seiten, Format (B × H): 170 mm x 241 mm, Gewicht: 807 g
Reihe: Trends in Mathematics
ISBN: 978-3-7643-6661-2
Verlag: Springer
At the heart of Clifford analysis is the study of systems of special partial differential operators that arise naturally from the use of Clifford algebra as a calculus tool. This book focuses on the study of Dirac operators and related ones, together with applications in mathematics, physics and engineering. This book collects refereed papers from a satellite conference to the ICM 2002, plus invited contributions. All articles contain unpublished new results.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Mathematische Analysis Moderne Anwendungen der Analysis
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
A. Differential Equations and Operator Theory.- Hodge Decompositions on Weakly Lipschitz Domains.- Monogenic Functions of Bounded Mean Oscillation in the Unit Ball.- Bp,q-Functions and their Harmonic Majorants.- Spherical Means and Distributions in Clifford Analysis.- Hypermonogenic Functions and their Cauchy-Type Theorems.- On Series Expansions of Hyperholomorphic BqFunctions.- Pointwise Convergence of Fourier Series on the Unit Sphere of R4with the Quaternionic Setting.- Cauchy Kernels for some Conformally Flat Manifolds.- Clifford Analysis on the Space of Vectors, Bivectors and ?-vectors.- B. Global Analysis and Differential Geometry.- Universal Bochner-Weitzenböck Formulas for Hyper-Kählerian Gradients.- Cohomology Groups of Harmonic Spinors on Conformally Flat Manifolds.- Spin Geometry, Clifford Analysis, and Joint Seminormality.- A Mean Value Laplacian for Strongly Kähler—Finsler Manifolds.- C. Applications.- Non-commutative Determinants and Quaternionic Monge-Ampère Equations.- Galpern—Sobolev Type Equations with Non-constant Coefficients.- A Theory of Modular Forms in Clifford Analysis, their Applications and Perspectives.- Automated Geometric Theorem Proving, Clifford Bracket Algebra and Clifford Expansions.- Quaternion-valued Smooth Orthogonal Wavelets with Short Support and Symmetry.




