Qin | Rescuing Econometrics | Buch | 978-1-032-58605-2 | sack.de

Buch, Englisch, 112 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 344 g

Reihe: Routledge INEM Advances in Economic Methodology

Qin

Rescuing Econometrics

From the Probability Approach to Probably Approximately Correct Learning
1. Auflage 2023
ISBN: 978-1-032-58605-2
Verlag: Routledge

From the Probability Approach to Probably Approximately Correct Learning

Buch, Englisch, 112 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 344 g

Reihe: Routledge INEM Advances in Economic Methodology

ISBN: 978-1-032-58605-2
Verlag: Routledge


Haavelmo’s 1944 monograph, The Probability Approach in Econometrics, is widely acclaimed as the manifesto of econometrics. This book challenges Haavelmo’s probability approach, shows how its use is delivering defective and inefficient results, and argues for a paradigm shift in econometrics towards a full embrace of machine learning, with its attendant benefits.

Machine learning has only come into existence over recent decades, whereas the universally accepted and current form of econometrics has developed over the past century. A comparison between the two is, however, striking. The practical achievements of machine learning significantly outshine those of econometrics, confirming the presence of widespread inefficiencies in current econometric research. The relative efficiency of machine learning is based on its theoretical foundation, and particularly on the notion of Probably Approximately Correct (PAC) learning. Careful examination reveals that PAC learning theory delivers the goals of applied economic modelling research far better than Haavelmo’s probability approach. Econometrics should therefore renounce its outdated foundation, and rebuild itself upon PAC learning theory so as to unleash its pent-up research potential. The book is catered for applied economists, econometricians, economists specialising in the history and methodology of economics, advanced students, philosophers of social sciences.

Qin Rescuing Econometrics jetzt bestellen!

Zielgruppe


Postgraduate


Autoren/Hrsg.


Weitere Infos & Material


1. Abstract Modelling of Reality 2. Learnability of Economic Relations 3. Basic Functions of Probability in Econometrics 4. Roles of Hypothesis Testing and Economic Model Formulation 5. Problems and Potentials of Estimation 6. Cognitive Problems of Prediction


Duo Qin is Emeritus Professor of Economics at SOAS, University of London.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.