Rabinovich / Silbermann / Roch | Limit Operators and Their Applications in Operator Theory | Buch | 978-3-7643-7081-7 | www.sack.de

Buch, Englisch, Band 150, 392 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 781 g

Reihe: Operator Theory: Advances and Applications

Rabinovich / Silbermann / Roch

Limit Operators and Their Applications in Operator Theory


2004
ISBN: 978-3-7643-7081-7
Verlag: Springer

Buch, Englisch, Band 150, 392 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 781 g

Reihe: Operator Theory: Advances and Applications

ISBN: 978-3-7643-7081-7
Verlag: Springer


This is the first monograph devoted to a fairly wide class of operators, namely band and band-dominated operators and their Fredholm theory. The main tool in studying this topic is limit operators. Applications are presented to several important classes of such operators: convolution type operators and pseudo-differential operators on bad domains and with bad coefficients.

Rabinovich / Silbermann / Roch Limit Operators and Their Applications in Operator Theory jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1 Limit Operators.- 1.1 Generalized compactness, generalized convergence.- 1.2 Limit operators.- 1.3 Algebraization.- 1.4 Comments and references.- 2 Fredholmness of Band-dominated Operators.- 2.1 Band-dominated operators.- 2.2 P-Fredholmness of rich band-dominated operators.- 2.3 Local P-Fredholmness: elementary theory.- 2.4 Local P-Fredholmness: advanced theory.- 2.5 Operators in the discrete Wiener algebra.- 2.6 Band-dominated operators with special coefficients.- 2.7 Indices of Fredholm band-dominated operators.- 2.8 Comments and references.- 3 Convolution Type Operators on $${\mathbb{R}^N}$$.- 3.1 Band-dominated operators on $${L^p}\left( {{\mathbb{R}^N}} \right)$$.- 3.2 Operators of convolution.- 3.3 Fredholmness of convolution type operators.- 3.4 Compressions of convolution type operators.- 3.5 A Wiener algebra of convolution-type operators.- 3.6 Comments and references.- 4 Pseudodifferential Operators.- 4.1 Generalities and notation.- 4.2 Bi-discretization of operators on $${L^2}\left( {{\mathbb{R}^N}} \right)$$.- 4.3 Fredholmness of pseudodifferential operators.- 4.4 Applications.- 4.5 Mellin pseudodifferential operators.- 4.6 Singular integrals over Carleson curves with Muckenhoupt weights.- 4.7 Comments and references.- 5 Pseudodifference Operators.- 5.1 Pseudodifference operators.- 5.2 Fredholmness of pseudodifference operators.- 5.3 Fredholm properties of pseudodifference operators on weighted spaces.- 5.4 Slowly oscillating pseudodifference operators.- 5.5 Almost periodic pseudodifference operators.- 5.6 Periodic pseudodifference operators.- 5.7 Semi-periodic pseudodifference operators.- 5.8 Discrete Schrödinger operators.- 5.9 Comments and references.- 6 Finite Sections of Band-dominated Operators.- 6.1 Stability of the finite section method.- 6.2Finite sections of band-dominated operators on $${\mathbb{Z}^1}$$ and $${\mathbb{Z}^2}$$.- 6.3 Spectral approximation.- 6.4 Fractality of approximation methods.- 6.5 Comments and references.- 7 Axiomatization of the Limit Operators Approach.- 7.1 An axiomatic approach to the limit operators method.- 7.2 Operators on homogeneous groups.- 7.3 Fredholm criteria for convolution type operators with shift.- 7.4 Comments and references.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.