With HiveQL, Dataframe and Graphframes
Buch, Englisch, 323 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 528 g
ISBN: 978-1-4842-4334-3
Verlag: Apress
PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You’ll also discover how to solve problems in graph analysis using graphframes.
On completing this book, you’ll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases.
What You Will Learn
- Understand PySpark SQL and its advanced features
- Use SQL and HiveQL with PySpark SQL
- Work with structured streaming
- Optimize PySpark SQL
- Master graphframes and graph processing
Who This Book Is ForData scientists, Python programmers, and SQL programmers.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Chapter 1: Introduction to PySparkSQL.- Chapter 2: Some time with Installation.- Chapter 3: IO in PySparkSQL.- Chapter 4 : Operations on PySparkSQL DataFrames.- Chapter 5 : Data Merging and Data Aggregation using PySparkSQL.- Chapter 6: SQL, NoSQL and PySparkSQL.- Chapter 7: Structured Streaming.- Chapter 8 : Optimizing PySparkSQL.- Chapter 9 : GraphFrames.