Rebeiz / Benning / Bohnert | The Chloroplast | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 31, 453 Seiten

Reihe: Advances in Photosynthesis and Respiration

Rebeiz / Benning / Bohnert The Chloroplast

Basics and Applications
1. Auflage 2010
ISBN: 978-90-481-8531-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark

Basics and Applications

E-Book, Englisch, Band 31, 453 Seiten

Reihe: Advances in Photosynthesis and Respiration

ISBN: 978-90-481-8531-3
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark



As the industrial revolution that has been based on by higher photosynthetic efficiencies and more utilization of fossil fuels nears its end [R. A. Ker biomass production per unit area. (2007) Even oil optimists expect energy demand to According to Times Magazine (April 30, 2007 outstrip supply. Science 317: 437], the next indus- issue), one fifth of the US corn crop is presently trial revolution will most likely need development converted into ethanol, which is considered to burn of alternate sources of clean energy. In addition cleaner than gasoline and to produce less gre- to the development of hydroelectric power, these house gases. In order to meet a target of 35 billion efforts will probably include the conversion of gallons of ethanol produced by the year 2017, the wind, sea wave motion and solar energy [Solar Day entire US corn crop would need to be turned into in the Sun (2007) Business week, October 15, pp fuel. But crops such as corn and sugarcane cannot 69-76] into electrical energy. The most promising yield enough to produce all the needed fuel. F- of those will probably be based on the full usage thermore, even if all available starch is converted of solar energy. The latter is likely to be plenti- into fuel, it would only produce about 10% of ful for the next 2-3 billion years. Most probably, our gasoline needs [R. F.

Rebeiz / Benning / Bohnert The Chloroplast jetzt bestellen!

Weitere Infos & Material


1;Advances in Photosynthesis and Respiration;8
1.1;The Chloroplast: Basics and Applications;4
1.1.1;Contents;16
1.1.2;Preface;26
1.1.3;Contributors;38
1.1.4;Chapter 1: Investigation of Possible Relationships Between the Chlorophyll Biosynthetic Pathway, the Assembly of Chlorophyll–;42
1.1.4.1;I Introduction;44
1.1.4.2;II Agricultural Productivity and Photosynthetic Efficiency;44
1.1.4.2.1;A The Primary Photochemical Act of Photosystem I (PS I) I and II;44
1.1.4.2.2;B Conversion of Carbon Dioxide into Carbohydrates;45
1.1.4.2.3;C Theoretical Maximal Energy Conversion Efficiency of the Photosynthetic Electron Transport System of Green Plants;45
1.1.4.2.4;D Actual Energy Conversion Efficiency of the PETS of Green Plants Under Field Conditions;46
1.1.4.3;III Molecular Basis of the Discrepancy Between the Theoretical Maximal Efficiency of the Photosynthetic Electron Transport Cha;46
1.1.4.3.1;A Contribution of Extrinsic Photosynthetic Electron Transport System Parameters to the Discrepancy between the Theoretical Phot;46
1.1.4.3.2;B Contribution of Intrinsic Photosynthetic Electron Transport Chain Parameters to the Discrepancy Between the Theoretical Pho;46
1.1.4.4;IV Correction of the Antenna/Photosystem Chlorophyll Mismatch;47
1.1.4.4.1;A State of the Art in Our Understanding of Chlorophyll Biosynthesis;47
1.1.4.4.1.1;1 The Single-Branched Chl Biosynthetic Pathway Does Not Account for the Formation of All the Chlorophyll in Green Plants;47
1.1.4.4.1.2;2 The Chlorophyll of Green Plants Is Formed Via a Multibranched Biosynthetic Pathway;48
1.1.4.4.2;B Thylakoid Apoprotein Biosynthesis;49
1.1.4.4.3;C Assembly of Chlorophyll–Protein Complexes;50
1.1.4.4.3.1;1 Assembly of Chlorophyll–Protein Complexes: The Single-Branched Chlorophyll Biosynthetic Pathway (SBP)-Single Location Model;50
1.1.4.4.3.2;2 Assembly of Chlorophyll–Protein Complexes: The Single- Branched Chlorophyll Biosynthetic Pathway-Multilocation Model;51
1.1.4.4.3.3;3 Assembly of Chlorophyll–Protein Complexes: The Multi-Branched Chlorophyll Biosynthetic Pathway (MBP)-Sublocation Model;51
1.1.4.4.4;D Which Chl–Thylakoid Apoprotein Assembly Model Is Validated by Experimental Evidence;52
1.1.4.4.4.1;1 Can Resonance Excitation Energy Transfer Between Anabolic Tetrapyrroles and ­Chlorophyll–Protein Complexes be ­Demonstrated?;53
1.1.4.4.4.1.1;(a) Induction of Tetrapyrrole Accumulation;53
1.1.4.4.4.1.2;(b) Selection of Appropriate Chlorophyll .a. Acceptors;54
1.1.4.4.4.1.3;(c) Acquisition of In Situ Emission and Excitation Spectra at 77 K;54
1.1.4.4.4.1.4;(d) Generation of Reference In Situ tetrapyrrole Excitation Spectra;54
1.1.4.4.4.1.5;(e) Processing of Acquired Excitation Spectra;54
1.1.4.4.4.1.6;(f) Demonstration of Resonance Excitation Energy Transfer Between Anabolic Tetrapyrroles and Chlorophyll–Protein Complexes;54
1.1.4.4.4.2;2 Development of Analytical Tools for Measuring Distances Separating Various Chlorophyll–Protein Complexes from Anabolic Tetr;55
1.1.4.4.4.2.1;(a) Determination of the Molar Extinction Coefficients of Total Chl .a. In Situ at 77 K;55
1.1.4.4.4.2.2;(b) Estimation of the Molar Extinction Coefficients of Chl a ~F685, ~F695 and ~F735 at 77 K;55
1.1.4.4.4.2.3;(c). Calculation of Distances R Separating Anabolic Tetrapyrroles from Various Chl a–protein Complexes;55
1.1.4.4.4.2.4;(d) Calculation of R.0;57
1.1.4.4.4.2.5;(e) Calculation of k, the Orientation Dipole;57
1.1.4.4.4.2.6;(f) Calculation of the Overlap Integral .Ju at 77K;57
1.1.4.4.4.2.7;(g) Calculation of n0., the Mean Wavenumber of Absorption and Fluorescence Peaks of the Donor at 77 .K;57
1.1.4.4.4.2.8;(h) Calculation of t0., the Inherent Fluorescence Lifetime of Donors at 77 K;58
1.1.4.4.4.2.9;(i) Calculation of Fy.Da. the Relative Fluorescence Yield of Tetrapyrrole Donors in the Presence of Chl Acceptors In Situ at 77;58
1.1.4.4.4.2.10;(j) Calculation of tD., the Actual Mean Fluorescence Lifetime of the Excited Donor in the Presence of Acceptor at 77 K;59
1.1.4.4.4.2.11;(k) Calculation of R.0. for Proto, Mp(e) and Pchlide .a. donors-Chl .a. Acceptors Pairs at 77 K;59
1.1.4.4.4.2.12;(l) Calculation of E, the Efficiency of Energy Transfer In Situ at 77 K;59
1.1.4.4.4.2.13;(m) Calculation of the Distances That Separate Proto, Mp(e), DV Pchlide .a., and MV Pchlide .a. from Various Chl .a. Acceptors;60
1.1.4.4.4.3;3 Testing the Functionalities of the Various Chl–Thylakoid Biogenesis Models;60
1.1.4.4.4.3.1;(a) The Single-Branched Pathway-Single Location Model Is Not Compatible with Resonance Excitation Energy Transfer Between An;61
1.1.4.4.4.3.2;(b) The SBP-Multilocation Model Is Not Compatible with the Realities of Chl Biosynthesis in Green Plants;61
1.1.4.4.4.3.3;(c) The MBP-Sublocation Model Is Compatible with the Realities of Chl Biosynthesis in Green Plants, and with Resonance Excitati;61
1.1.4.4.5;E Guidelines and Suggestions to Bioengineer Plants with Smaller Photosynthetic Unit Size;62
1.1.4.4.5.1;1 Selection of Mutants;62
1.1.4.4.5.1.1;(a) Mutants of Higher Plants Other Than Arabidopsis;62
1.1.4.4.5.1.2;(b) Arabidopsis Mutants;62
1.1.4.4.5.1.3;(c) Lower Plant Mutants;62
1.1.4.4.5.2;2 Preparation of Photosynthetic Particles;62
1.1.4.4.5.3;3 Determination of Biosynthetic Routes Functional in a Specific Mutant or Photosynthetic Particle;62
1.1.4.5;References;63
1.1.5;Chapter 2: Evidence for Various 4-Vinyl Reductase Activities in Higher Plants;66
1.1.5.1;I Introduction;67
1.1.5.2;II Materials and Methods;70
1.1.5.2.1;A Plant Material;70
1.1.5.2.2;B Light Pretreatment;70
1.1.5.2.3;C Chemicals;70
1.1.5.2.4;D Preparation of Divinyl Protochlorophyllide .a;70
1.1.5.2.5;E Preparation of Divinyl Chlorophyllide .a;70
1.1.5.2.6;F Preparation of Divinyl Mg-Protoporphyrin Mono Methyl Ester;70
1.1.5.2.7;G Isolation of Crude and Purified Plastids;70
1.1.5.2.8;H Preparation of Plastid Membranes and Stroma;71
1.1.5.2.9;I Preparation of Envelope Membranes;71
1.1.5.2.10;J Solubilization of [4-Vinyl] Reductase(s) by 3-[(3-Cholamidopropyl)dimethylammonio]-1-Propanesulfonate;71
1.1.5.2.11;K Assay of [4-Vinyl] Reductase Activities;71
1.1.5.2.12;L Protein Determination;71
1.1.5.2.13;M Extraction and Determination of the Amounts of Divinyl and Monovinyl Tetrapyrroles;71
1.1.5.3;III Results;71
1.1.5.3.1;A Experimental Strategy;71
1.1.5.3.2;B Detection of [4-Vinyl]Protochlorophyllide .a. Reductase, [4-Vinyl]Mg-Protoporphyrin Monoester Reductase and [4-Vinyl]Mg-Prot;72
1.1.5.3.3;C Solubilization of [4-Vinyl]Protochlorophyllide .a. Reductase, [4-Vinyl]Mg-Protoporphyrin Monoester Reductase and [4-Vinyl]Mg-;72
1.1.5.3.4;D 4-Vinyl Side Chain Reduction Occurs Before Isocycle Ring Formation in Photoperiodically-Grown Barley;72
1.1.5.3.5;E [4-Vinyl] Chlorophyllide .a. Reductase and [4-Vinyl]Protochlorophyllide .a. Reductase Activities do not Occur in Barley Et;73
1.1.5.3.6;F [4-Vinyl] Protochlorophyllide .a. Reductase Activity Is Detectable in Greening Barley;73
1.1.5.3.7;G NADPH, but Not NADH is a Cofactor for [4-Vinyl]Chlorophyllide Reductase and [4-Vinyl]Protochlorophyllide Reductase Solubilize;73
1.1.5.3.8;H The Presence of NADP or Vitamin B.3. in the Incubation Buffer Has No Effect on the Activities of [4-Vinyl]Chlorophyllide .a.;74
1.1.5.3.9;I Demonstration of [4-Vinyl] Protochlorophyllide a Reductase and [4-Vinyl] Chlorophyllide .a. Reductase Activities in Barley Ch;74
1.1.5.3.10;J Effects of Various Light Treatments on [4-Vinyl] Clorophyllide .a. Reductase Activity;75
1.1.5.4;IV Discussion;75
1.1.5.5;References;78
1.1.6;Chapter 3: Control of the Metabolic Flow in Tetrapyrrole Biosynthesis: Regulation of Expression and Activity of Enzymes in th;80
1.1.6.1;I Introduction;81
1.1.6.2;II Mg Protoporphyrin IX Chelatase;81
1.1.6.2.1;A Structure and Catalytic Activity;81
1.1.6.2.2;B Control of Expression, Activity and Localisation;83
1.1.6.2.3;C Analysis of Mutants and Transgenic Plants;84
1.1.6.3;III S-Adenosyl-L-Methionine:Mg Protoporphyrin IX Methyltransferase;85
1.1.6.4;IV Mg Protoporphyrin IX Monomethylester Cyclase;86
1.1.6.5;V Divinyl Reductase;87
1.1.6.6;VI Regulatory Aspects of Mg Porphyrin Synthesis;87
1.1.6.7;References;90
1.1.7;Chapter 4: Regulation and Functions of the Chlorophyll Cycle;95
1.1.7.1;I Introduction;96
1.1.7.1.1;A Distribution of Chlorophyll .b;96
1.1.7.1.2;B Establishment of the Chl Cycle;98
1.1.7.1.2.1;1 Chl .b. Synthesis;98
1.1.7.1.2.2;2 Chl .b. to Chl .a. Conversion;99
1.1.7.1.2.3;3 Why Is the Interconversion of Chl .a. and Chl .b. Called the Chl Cycle?;100
1.1.7.2;II Pathway and Enzymes of the Chlorophyll (Chl) CycleA Pathway of the Chl Cycle;100
1.1.7.2.1;B Enzymes of the Chl Cycle;102
1.1.7.2.1.1;1 Chlorophyllide .a. Oxygenase;102
1.1.7.2.1.2;2 Chl .b. Reductase;103
1.1.7.2.1.3;3 HM-Chl .a. Reductase;103
1.1.7.3;III Diversity and Evolutionary Aspects of Chlorophyllide .a. Oxygenase;103
1.1.7.3.1;A Diversity of CAO Sequences;103
1.1.7.3.2;B Domain Structure of CAO;106
1.1.7.3.3;C Distribution of Chl .b. Reductase;106
1.1.7.4;IV Regulation of the Chl Cycle;107
1.1.7.4.1;A Regulation of the Chl .a. to .b. Conversion;107
1.1.7.4.1.1;1 Transcriptional Control;107
1.1.7.4.1.2;2 The Signal Transduction Pathway;107
1.1.7.4.1.3;3 Post-transcriptional Control;108
1.1.7.4.2;B Regulation of the Chl .b. to .a. Conversion;108
1.1.7.5;V Roles of the Chl Cycle in the Construction of the Photosynthetic Apparatus;109
1.1.7.5.1;A Coordination of the Chl cycle and the Construction of the Photosynthetic Apparatus;109
1.1.7.5.2;B Construction and Deconstruction of the Photosynthetic Apparatus and Its Coordination with the Chl .b. to .a. Conversion Syste;112
1.1.7.6;References;113
1.1.8;Chapter 5: Magnesium Chelatase;118
1.1.8.1;I Introduction;119
1.1.8.2;II The 40 kDa Subunit;119
1.1.8.3;III Comparision of 40 kDa Subunit with the Golgi Membrane Protein NSF-D2, Heat Shock Locus Protein HslU and the .d¢. Subun;120
1.1.8.4;IV The 70 kDa Subunit and Its Complex Formation with the 40 kDa Subunit;122
1.1.8.5;V The 140 kDa Subunit;124
1.1.8.6;VI The Gun4 Protein;125
1.1.8.7;References;126
1.1.9;Chapter 6: The Enigmatic Chlorophyll .a. Molecule in the Cytochrome .b6f. Complex;128
1.1.9.1;I Introduction: On the Presence of Two Pigment Molecules in the Cytochrome .b6f. Complex;129
1.1.9.2;II Crystal Structures of the Cyt .b6f. Complex: The Environment of the Bound Chlorophyll;129
1.1.9.3;III Additional Function(s) of the Bound Chlorophyll;130
1.1.9.4;IV Additional Function of the .b.-Carotene;131
1.1.9.5;References;131
1.1.10;Chapter 7: The Non-mevalonate DOXP/MEP (Deoxyxylulose 5-Phosphate/Methylerythritol 4-Phosphate) Pathway of Chloroplast Isopre;133
1.1.10.1;I Introduction;134
1.1.10.2;II The Cytosolic Acetate/Mevalonate (MVA) Pathway of Isopentenyl Pyro phosphate (IPP) Biosynthesis and Its Inhibition;135
1.1.10.3;III The Plastidic DOXP/MEP Pathway of IPP and Its Inhibition;137
1.1.10.4;IV Labeling Experiments of Chloroplast Prenyllipids;138
1.1.10.5;V Compartmentation of Isoprenoid Biosynthesis in Plants;139
1.1.10.6;VI Branching Point of DOXP/MEP Pathway with Other Chloroplast Pathways;140
1.1.10.7;VII Cross-Talk Between Both Cellular Isoprenoid Pathways;142
1.1.10.8;VIII Earlier Observations on Cooperation of Both Isoprenoid Pathways;143
1.1.10.9;IX Distribution of the DOXP/MEP and the MVA Pathways in Photosynthetic Algae and Higher Plants;144
1.1.10.10;X Evolutionary Aspects of the DOXP/MEP Pathway;147
1.1.10.11;XI Biosynthesis of Isoprene and Methylbutenol;147
1.1.10.12;XII Level of Chlorophylls, Carotenoids and Prenylquinones in Sun and Shade Leaves;149
1.1.10.13;XIII Inhibition of Chlorophyll and Carotenoid Biosynthesis by 5-Ketoclomazone;150
1.1.10.14;XIV Conclusion;151
1.1.10.15;References;152
1.1.11;Chapter 8: The Methylerythritol 4-Phosphate Pathway: Regulatory Role in Plastid Isoprenoid Biosynthesis;157
1.1.11.1;I Introduction;158
1.1.11.2;II Regulatory Role of the MEP Pathway in Plastid Isoprenoid Biosynthesis;159
1.1.11.3;III Crosstalk Between the MVA and the MEP Pathways;161
1.1.11.4;IV Perspectives for Metabolic Engineering of Plastid Isoprenoids;162
1.1.11.5;References;162
1.1.12;Chapter 9: The Role of Plastids in Protein Geranylgeranylation in Tobacco BY-2 Cells;165
1.1.12.1;I Introduction;166
1.1.12.2;II Protein Isoprenylation in Plants;167
1.1.12.2.1;A The Chemical Modification of a C-Terminal Cysteine;167
1.1.12.2.2;B Functions of Protein Prenylation in Plants;167
1.1.12.2.3;C Isoprenylation of Proteins in Tobacco BY-2 Cells;167
1.1.12.2.4;D Origin of the Prenyl Residue Used for Protein Modification;167
1.1.12.2.4.1;1 A Double Origin of Prenyl Diphosphates;167
1.1.12.2.4.2;2 Construction of a Tool to Test the Origin of Geranylgeranyl Residues in Prenylated Proteins;168
1.1.12.2.4.2.1;(a) State of the Art;168
1.1.12.2.4.2.2;(b) Tobacco BY-2 Cell Suspensions as a Suitable Tool;168
1.1.12.2.4.2.3;(c) Description of the System and Results;169
1.1.12.3;III Conclusion and Perspectives;172
1.1.12.4;References;172
1.1.13;Chapter 10: The Role of the Methyl-Erythritol-Phosphate (MEP)Pathway in Rhythmic Emission of Volatiles;176
1.1.13.1;I Introduction;177
1.1.13.2;II The MEP Pathway and Rhythmic Emission of Floral Volatiles;178
1.1.13.3;III The MEP Pathway and Rhythmic Emission of Leaf Volatiles;184
1.1.13.4;IV The MEP Pathway and Rhythmic Emission of Herbivore-Induced Plant Volatiles;185
1.1.13.5;V The MEP Pathway and Rhythmic Emission of Isoprene;185
1.1.13.6;VI Conclusions;187
1.1.13.7;References;187
1.1.14;Chapter 11: Tocochromanols: Biological Function and Recent Advances to Engineer Plastidial Biochemistry for Enhanced Oil Seed;191
1.1.14.1;I Introduction;192
1.1.14.2;II Tocochromanol Biosynthesis and Regulation;195
1.1.14.3;III Tocochromanol Pathway Engineering for Enhancement of Vitamin E;197
1.1.14.4;IV Optimized Tocochromanol Composition;197
1.1.14.5;V Enhancement of Total Tocochromanol Content;198
1.1.14.6;VI Enhancement of Tocotrienol Biosynthesis;200
1.1.14.7;VII Conclusions and Outlook;200
1.1.14.8;References;202
1.1.15;Chapter 12: The Anionic Chloroplast Membrane Lipids: Phosphatidylglycerol and Sulfoquinovosyldiacylglycerol;206
1.1.15.1;I Introduction;207
1.1.15.2;II Biosynthesis of Plastidic Phosphatidylglycerol;209
1.1.15.3;III Biosynthesis of Sulfoquinovosyldiacylglycerol;210
1.1.15.4;IV Functions of Plastid Phosphatidylglycerol;211
1.1.15.5;V Functions of Sulfoquinovosyldiacylglycerol;212
1.1.15.6;VI The Importance of Anionic Lipids in Chloroplasts;213
1.1.15.7;VII Future Perspectives;214
1.1.15.8;References;215
1.1.16;Chapter 13: Biosynthesis and Function of Monogalactosyldiacylglycerol (MGDG), the Signature Lipid of Chloroplasts;219
1.1.16.1;I Introduction;220
1.1.16.2;II Identification of MGDG Synthase in Seed Plants;220
1.1.16.3;III Biochemical Properties of MGDG Synthase;221
1.1.16.3.1;A Enzymatic Features of MGDG Synthase;221
1.1.16.3.2;B Subcellular Localization of MGDG Synthase;221
1.1.16.3.3;C Three-Dimensional Structure of MGDG Synthase;222
1.1.16.3.4;D Two Types of MGDG Synthase in Arabidopsis;222
1.1.16.3.5;E MGDG Synthesis in Non-photosynthetic Organs;223
1.1.16.4;IV Function and Regulation of MGDG Synthase;223
1.1.16.4.1;A Regulation of Type A MGDG Synthase;223
1.1.16.4.2;B Regulation of Type B MGDG Synthase;224
1.1.16.4.3;C In Vivo Function of MGDG Synthase by Mutant Analyses;225
1.1.16.5;V Substrate Supply Systems for MGDG Synthesis;226
1.1.16.5.1;A DAG Supply to the Outer Envelope;227
1.1.16.5.2;B DAG Supply to the Inner Envelope;229
1.1.16.6;VI MGDG Synthesis in Photoautotrophic Prokaryotes;230
1.1.16.7;VII Future Perspectives;231
1.1.16.8;References;232
1.1.17;Chapter 14: Synthesis and Function of the Galactolipid Digalactosyldiacylglycerol;237
1.1.17.1;I Introduction;238
1.1.17.2;II Structure and Occurrence of Digalactosyldiacylglycerol;238
1.1.17.3;III Synthesis of Digalactosyldiacylglycerol and Oligogalactolipids;239
1.1.17.4;IV Function of Digalactosyldiacylglycerol in Photosynthesis;240
1.1.17.5;V Digalactosyldiacylglycerol as Surrogate for Phospholipids;241
1.1.17.6;VI Changes in Galactolipid Content During Stress and Senescence;242
1.1.17.7;VII Conclusions;243
1.1.17.8;References;243
1.1.18;Chapter 15: The Chemistry and Biology of Light-Harvesting Complex II and Thylakoid Biogenesis: .raison d’etre. of Chlorophyll;246
1.1.18.1;I Introduction;247
1.1.18.1.1;A Chlorophyll .a;248
1.1.18.1.2;B Chlorophyll .b;249
1.1.18.1.3;C Chlorophyll .c;249
1.1.18.1.4;D Chlorophyll .d;249
1.1.18.2;II Coordination Chemistry of Chlorophyll and Ligands;250
1.1.18.3;III Binding of Chlorophyll to Proteins;251
1.1.18.4;IV Chlorophyll Assignments in Light Harvesting Complex II (LHCII);253
1.1.18.5;V Cellular Location of Chlorophyll .b. Synthesis and LHCII Assembly;255
1.1.18.6;VI Chlorophyllide .a. Oxygenase;257
1.1.18.7;VII Conclusions;258
1.1.18.8;References;259
1.1.19;Chapter 16: Folding and Pigment Binding of Light-Harvesting Chlorophyll .a/b. Protein (LHCIIb);263
1.1.19.1;I Introduction;264
1.1.19.2;II Time-Resolved Measurements of LHCIIb Assembly In Vitro;265
1.1.19.2.1;A Fluorescence as a Monitor for LHCIIb Assembly;265
1.1.19.2.2;B A Two-step Model of Pigment Binding;267
1.1.19.2.3;C Protein Folding During LHCIIb Assembly;270
1.1.19.3;III Concluding Remarks;273
1.1.19.4;References;273
1.1.20;Chapter 17: The Plastid Genome as a Platform for the Expression of Microbial Resistance Genes;277
1.1.20.1;I Introduction;278
1.1.20.2;II Yield and Resistance;279
1.1.20.3;III .Aspergillus flavus.: Managing a Food and Feed Safety Threat;280
1.1.20.3.1;A Economic and Health Impacts;280
1.1.20.3.2;B Approaches to Intervention;280
1.1.20.4;IV The Case for Transgenic Interventions;282
1.1.20.4.1;A Modifying the Nuclear Genome for Resistance;282
1.1.20.5;V Plastid Transformation;283
1.1.20.5.1;B Features of the Plastid Expression System;283
1.1.20.5.1.1;1 The Plastome;284
1.1.20.5.1.1.1;(a) Integration of Foreign Sequences;284
1.1.20.5.1.1.2;(b) Maternal Inheritance;284
1.1.20.5.2;C Moving Beyond the Model System;284
1.1.20.6;VI Identifying Candidate Genes for Aflatoxin Resistance;284
1.1.20.6.1;A Chloroperoxidase;285
1.1.20.6.1.1;1 Antimicrobial Potential;285
1.1.20.6.1.2;2 Expression of CPO-P in Transgenic Plants;285
1.1.20.7;VII An Environmentally Benign Approach;285
1.1.20.7.1;A Plastid Transformation Vector;285
1.1.20.7.2;B Determinants of Foreign Gene Expression in Plastids;286
1.1.20.7.2.1;1 The .psbA. 5.¢. UTR;286
1.1.20.7.2.1.1;(a) The Potential of .psbA. 5.¢. UTR Stems From Its Endogenous Role in Plastids;286
1.1.20.7.2.1.2;(b) Translational Control Is Highly Regulated and Dependent on Imported Trans-acting Protein Factors;286
1.1.20.7.2.1.3;(c) Light Regulation of Translation Via the .psbA. 5.¢. UTR;287
1.1.20.7.3;C The CPO-P Transplastomic Lines;287
1.1.20.7.3.1;1 Evaluating CPO-P Expression;287
1.1.20.7.3.1.1;(a) Protein Expression;287
1.1.20.7.3.1.2;(b) Analysis of Foreign Transcripts;287
1.1.20.7.3.1.3;(c) Continued Analysis;287
1.1.20.8;VIII Future Challenges: Control of Aflatoxin Contamination in Cottonseed;288
1.1.20.8.1;A Taking a Direct Approach;288
1.1.20.8.2;B Taking an Indirect Approach;288
1.1.20.8.2.1;1 Drought Tolerance;289
1.1.20.8.2.2;2 Resistance to Herbivory;289
1.1.20.8.3;C Generation of Transplastomic Cotton;289
1.1.20.9;IX Conclusion;289
1.1.20.10;References;289
1.1.21;Chapter 18: Chloroplast Genetic Engineering: A Novel Technology for Agricultural Biotechnology and Bio-pharmaceutical Industr;295
1.1.21.1;I Introduction;296
1.1.21.2;II Genome and Organization;297
1.1.21.3;III Concept of Chloroplast Transformation;298
1.1.21.4;IV Advantages of Plastid Transformation;299
1.1.21.5;V Chloroplast Transformation Vectors and Mode of Transgene Integration into Chloroplast Genome;301
1.1.21.6;VI Methods of Plastid Transformation and Recovery of Transplastomic Plants;302
1.1.21.7;VII Current Status of Plastid Transformation;304
1.1.21.8;VIII Application of Chloroplast Technology for Agronomic Traits;305
1.1.21.9;IX Chloroplast-Derived Vaccine Antigens;307
1.1.21.10;X Chloroplast-Derived Biopharmaceutical Proteins;309
1.1.21.11;XI Chloroplast-Derived Industrially Valuable Biomaterials;310
1.1.21.12;References;312
1.1.22;Chapter 19: Engineering the Sunflower Rubisco Subunits into Tobacco Chloroplasts: New Considerations;317
1.1.22.1;I Introduction;319
1.1.22.2;II Transforming the Tobacco Plastome with Sunflower Rubisco Genes;320
1.1.22.2.1;A Replacing the Tobacco .rbc.L with Sunflower .rbc.L.S;320
1.1.22.2.2;B Co-transplanting .rbc.L.S. and a Codon-Modified Sunflower .cmrbc.S Gene;320
1.1.22.2.2.1;1 A Need to Co-engineer Cognate L- and S-Subunits;320
1.1.22.2.3;2 Altering the Codon Bias of a Sunflower .Rbc.S.s. Gene;321
1.1.22.2.3.1;3 Using the T7g10 5.¢.UTR to Regulate Sunflower S-Subunit Translation;322
1.1.22.2.4;C Transformation, Selection and Growth of the Transplastomic Lines;322
1.1.22.3;III Inadvertent Gene Excision by Recombination of Duplicated .psb.A 3.¢.UTR Sequence;322
1.1.22.3.1;A Preferential Loss of Plastome Copies Containing .cmrbc.S.S;322
1.1.22.3.2;B Why Were the .cmrbc.S.S. Containing Plastome Copies Lost?;323
1.1.22.4;IV Simple Removal of .aad.A in T.0. t.Rst.SLA by Transient CRE Recombinase Expression;323
1.1.22.4.1;A Bacteriophage P1 CRE-.lox. Site-specific Recombination;323
1.1.22.4.2;B Removing .aad.A by Bombarding with Plasmid pKO27;324
1.1.22.4.3;1 Selection and Screening for .Daad.A Lines;324
1.1.22.4.3.1;2 Screening the T.1. Progeny for .aad.A Loss and No Incorporation of the pKO27 T-DNA;325
1.1.22.5;V Growth Phenotypes of the tob.Rst., t.Rst.LA and t.Rst.L Lines;325
1.1.22.5.1;A Elevated CO.2. Partial Pressures Augment the Growth of the Juvenile Transformants;325
1.1.22.5.2;B The Comparable Phenotype and Growth Rates of the Transgenic Lines;325
1.1.22.5.2.1;1 Differences in Leaf and Apical Meristem Development;325
1.1.22.5.2.2;2 Shoot Development;327
1.1.22.5.3;C Leaf and Floral Development;327
1.1.22.6;VI Expression of the Hybrid L.s.S.t. Rubisco in Mature Leaves;328
1.1.22.6.1;A Steady-State .rbc.L.S. mRNA Levels;328
1.1.22.6.2;B Rubisco and Protein Content;328
1.1.22.6.3;C Translational Efficiency and/or Folding and Assembly Limit L.s.S.t. Production;330
1.1.22.7;VII Whole Leaf Gas Exchange Measurements of the L.s.S.t. Kinetics;330
1.1.22.7.1;A Measuring Gamma Star (.G.*);330
1.1.22.7.2;B Measuring the L.s.S.t. Michaelis Constants for CO.2. and O.2;331
1.1.22.8;VIII Future Considerations for Transplanting Foreign Rubiscos into Tobacco Plastids;331
1.1.22.8.1;A Improving L.s.S.t. Synthesis;331
1.1.22.8.1.1;1 Limitations to Translational Processing of .rbc.L.S;331
1.1.22.8.1.2;2 Subunit Assembly Limitations;333
1.1.22.8.2;B The Assembly and Kinetic Capacity of Other Hybrid Rubiscos;333
1.1.22.8.3;C Constraints on S-Subunit Engineering in Tobacco;334
1.1.22.8.4;D Rubisco Activase Compatibility;334
1.1.22.9;IX Quicker Screening of the Assembly and Kinetics of Genetically Modified L.8.S.8. Enzymes in Tobacco Chloroplasts;334
1.1.22.10;References;335
1.1.23;Chapter 20: Engineering Photosynthetic Enzymes Involved in CO.2.–Assimilation by Gene Shuffling;339
1.1.23.1;I Introduction;340
1.1.23.2;II Potential Targets for Improving Plant Photosynthesis;340
1.1.23.3;III Directed Molecular Evolution Provides a Useful Tool to Engineer Selected Enzymes;342
1.1.23.4;IV Improving Rubisco CatalyticEfficiency by Gene Shuffling;344
1.1.23.4.1;A Attempts to Express .Arabidopsis thaliana. Rubisco in .Chlamydomonas reinhardtii;344
1.1.23.4.2;B Shuffling the .Chlamydomonas reinhardtii. Rubisco Large Subunit;346
1.1.23.5;V Improving Rubisco Activase Thermostability by Gene Shuffling;348
1.1.23.6;VI Future Prospects;350
1.1.23.7;References;352
1.1.24;Chapter 21: Elevated CO.2. and Ozone: Their Effects on Photosynthesis;355
1.1.24.1;I Introduction;356
1.1.24.2;II Regulation of the Photosynthetic Apparatus: Metabolic and Environmental Signals;357
1.1.24.3;III Possible Scenarios Explaining Effects of Elevated [CO.2.] and [O.3.] on Plant Behavior in the Altered Earth Atmosphere;359
1.1.24.3.1;A Plant Responses to Elevated [CO.2];360
1.1.24.3.2;B Plant Responses to Tropospheric [O.3.];361
1.1.24.3.3;C Combined Effects of [CO.2] and [O.3];362
1.1.24.4;IV Benefits from Model Species:.Arabidopsis thaliana. and .Thellungiella halophila;363
1.1.24.5;V Discussion;368
1.1.24.5.1;A The Importance of Model Species;368
1.1.24.5.2;B Gene Networks Explaining Transcript Behavior;368
1.1.24.6;VI Conclusions;372
1.1.25;Chapter 22: Regulation of Photosynthetic Electron Transport;379
1.1.25.1;I Introduction;380
1.1.25.2;II Chlorophyll Fluorescence: A Non-disruptive Tool for Electron Transport Analysis;381
1.1.25.3;III Thermal Dissipation of Absorbed Excessive Light Energy from PSII;382
1.1.25.4;IV Balancing Excitation Energy Between Photosystems by State Transition;382
1.1.25.5;V Photorespiration and the Water–Water Cycle: Alternative Electron Sinks?;383
1.1.25.6;VI The Discovery of PGR5-Dependent PSI Cyclic Electron Transport;384
1.1.25.7;VII PSI Cyclic Electron Transport Mediated by Chloroplast NAD(P)H Dehydrogenase;386
1.1.25.8;VIII PSI Cyclic Electron Transport and Thermal Dissipation;387
1.1.25.9;IX PSI Cyclic Electron Transport and State Transition;388
1.1.25.10;X The Water–Water Cycle and PSI Cyclic Electron Transport;388
1.1.25.11;XI Concluding Remarks;388
1.1.25.12;References;389
1.1.26;Chapter 23: Mechanisms of Drought and High Light Stress Tolerance Studied in a Xerophyte, .Citrullus lanatus. (Wild Watermelon);394
1.1.26.1;I Introduction;395
1.1.26.2;II Experimental Procedures;396
1.1.26.3;III Physiological Response of Wild Watermelon;397
1.1.26.4;IV Enzymes for Scavenging Reactive Oxygen Species;399
1.1.26.5;V Cytochrome .b561. and Ascorbate Oxidase;400
1.1.26.6;VI Global Changes in the Proteomes;402
1.1.26.7;VII Citrulline Metabolism and Function;402
1.1.26.8;VIII Concluding Remarks;404
1.1.26.9;References;405
1.1.27;Chapter 24: Antioxidants and Photo-oxidative Stress Responses in Plants and Algae;409
1.1.27.1;I Types of Reactive Oxygen Species;410
1.1.27.2;II Sources of Reactive Oxygen Species in Algae and Plants;411
1.1.27.3;III Functions of Reactive Oxygen Species;411
1.1.27.4;IV Oxidative Damage in Chloroplasts;412
1.1.27.5;V Avoidance of Reactive Oxygen Species Production;413
1.1.27.6;VI Non-enzymatic Mechanisms for Scavenging Reactive Oxygen Species;413
1.1.27.6.1;A Hydrophilic Antioxidants;414
1.1.27.6.1.1;1 Ascorbate;414
1.1.27.6.1.2;2 Glutathione;415
1.1.27.6.2;B Lipophilic Antioxidants;415
1.1.27.6.2.1;1 Tocopherol;415
1.1.27.6.2.2;2 Carotenoids;416
1.1.27.6.3;C Antioxidant Interactions;417
1.1.27.7;VII Enzymatic Mechanisms for Scavenging Reactive Oxygen Species;418
1.1.27.7.1;A Superoxide Dismutase;418
1.1.27.7.2;B Catalase;419
1.1.27.7.3;C Ascorbate Peroxidase;419
1.1.27.7.4;D Glutathione Peroxidase;419
1.1.27.7.5;E Thioredoxin;420
1.1.27.7.6;F Glutaredoxin;421
1.1.27.7.7;G Peroxiredoxin;421
1.1.27.8;References;422
1.1.28;Chapter 25: Singlet Oxygen-Induced Oxidative Stress in Plants;427
1.1.28.1;I Introduction;428
1.1.28.1.1;II Formation of Singlet Oxygen in Plants;428
1.1.28.2;III Generation of Singlet Oxygen from Chlorophyll Biosynthesis Intermediates;430
1.1.28.3;IV Porphyrin-Generating Compounds;430
1.1.28.3.1;A 5-Aminolevulinic Acid;430
1.1.28.3.2;B Diphenyl Ethers;431
1.1.28.4;V Type I and Type II Photosensitization Reactions of Tetrapyrroles;431
1.1.28.5;VI Intracellular Destruction of Singlet Oxygen;432
1.1.28.6;VII Singlet Oxygen-Mediated Oxidative Damage to the Photosynthetic Apparatus;432
1.1.28.6.1;A Generation of Tetrapyrrole-Induced Singlet Oxygen in Chloroplasts;433
1.1.28.6.2;B Singlet Oxygen-Induced Impairment of the Electron Transport Chain;433
1.1.28.6.3;C Role of Singlet Oxygen Scavengers;434
1.1.28.6.4;D Impact of .1.O.2. on Chlorophyll a Fluorescence;434
1.1.28.6.5;E Effect of Singlet Oxygen on Thermoluminiscence;436
1.1.28.7;VIII Singlet Oxygen-induced Oxidative Damage in Mutants;436
1.1.28.7.1;A Chlorophyll Anabolic Mutants;436
1.1.28.7.2;B Chlorophyll Catabolic Mutants;438
1.1.28.8;IX Future Prospects;438
1.1.28.9;References;439



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.