E-Book, Englisch, 186 Seiten
Richter Robotized Transcranial Magnetic Stimulation
2013
ISBN: 978-1-4614-7360-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 186 Seiten
ISBN: 978-1-4614-7360-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Robotized Transcranial Magnetic Stimulation describes the methods needed to develop a robotic system that is clinically applicable for the application of transcranial magnetic stimulation (TMS). Chapter 1 introduces the basic principles of TMS and discusses current developments towards robotized TMS. Part I (Chapters 2 and 3) systematically analyzes and clinically evaluates robotized TMS. More specifically, it presents the impact of head motion on the induced electric field. In Part II (Chapters 3 to 8), a new method for a robust robot/camera calibration, a sophisticated force-torque control with hand-assisted positioning, a novel FTA-sensor for system safety, and techniques for direct head tracking, are described and evaluated. Part III discusses these developments in the context of safety and clinical applicability of robotized TMS and presents future prospects of robotized TMS. Robotized Transcranial Magnetic Stimulation is intended for researchers as a guide for developing effective robotized TMS solutions. Professionals and practitioners may also find the book valuable.
Autoren/Hrsg.
Weitere Infos & Material
1;Acknowledgments;5
2;Contents;6
3;Symbols;10
4;1 Introduction;12
4.1;1.1…Transcranial Magnetic Stimulation;12
4.1.1;1.1.1 Principle of TMS;12
4.1.2;1.1.2 Applications of TMS: Single-Pulse Versus Repetitive Stimulation;14
4.1.3;1.1.3 TMS Coils;15
4.1.4;1.1.4 Motor Evoked Potentials and Motor Threshold;17
4.1.4.1;1.1.4.1 Rossini Criterion;17
4.1.4.2;1.1.4.2 Two-Threshold Method;18
4.1.4.3;1.1.4.3 Threshold Hunting;18
4.1.4.4;1.1.4.4 Brief Comparison;18
4.2;1.2…State-of-the-Art: Neuro-Navigated TMS;19
4.2.1;1.2.1 Head Registration and Tracking;20
4.2.2;1.2.2 Coil Tracking;21
4.3;1.3…Robotized TMS: Combining Neuro-Navigation with Automation;22
4.3.1;1.3.1 Specialized Setup;22
4.3.2;1.3.2 Industrial Robot Design;24
4.3.2.1;1.3.2.1 Current Setup of the Robotized TMS System;24
4.3.2.2;1.3.2.2 Typical Procedure of Robotized TMS;25
4.3.2.3;1.3.2.3 Motion Compensation;27
4.4;1.4…Purpose of this Work;27
4.4.1;1.4.1 Structure of this Work;29
4.5;References;30
5;Part ISystematic Analysis and Evaluation of Robotized TMS in Practice;36
6;2 The Importance of Robotized TMS: Stability of Induced Electric Fields;37
6.1;2.1…Principle of End-to-End Accuracy;38
6.2;2.2…Realization and Data Acquisition;40
6.2.1;2.2.1 Head Motion Measurements;40
6.2.2;2.2.2 Electric Field Measurements;41
6.2.3;2.2.3 Typical TMS Scenarios;43
6.2.4;2.2.4 Error Calculation;44
6.2.5;2.2.5 Statistical Analysis;44
6.3;2.3…Impact of Head Motion on TMS;44
6.3.1;2.3.1 Head Motion;44
6.3.2;2.3.2 End-to-End Accuracy;46
6.4;2.4…Consequences;50
6.5;2.5…Derived Requirements for Robotized TMS;51
6.6;References;52
7;3 Evaluation of Robotized TMS: The Current System in Practice;54
7.1;3.1…Optimal Coil Orientation for TMS of the Lower Limb;54
7.1.1;3.1.1 Experimental Realization;55
7.1.1.1;3.1.1.1 Setup;55
7.1.1.2;3.1.1.2 Transcranial Magnetic Stimulation;56
7.1.1.3;3.1.1.3 Further Analysis;57
7.1.2;3.1.2 Stimulation Outcomes;58
7.1.3;3.1.3 Relevance for TMS;61
7.2;3.2…Coil-to-Scalp/Cortex Distance;62
7.2.1;3.2.1 TMS Recordings;63
7.2.2;3.2.2 Measured Motor Thresholds and Distances;63
7.2.3;3.2.3 Robotized TMS for Accurate Coil Positioning;64
7.3;3.3…Practical Evaluation of Robotized TMS;64
7.4;References;66
8;Part IISafe and Clinically Applicable Robotized TMS;69
9;4 Robust Real-Time Robot/Camera Calibration;70
9.1;4.1…Hand--Eye Calibration;72
9.2;4.2…Online Calibration;74
9.2.1;4.2.1 Basic Idea of Online Calibration;75
9.2.2;4.2.2 Marker Calibration;75
9.2.3;4.2.3 Robust Real-Time Calibration;76
9.2.4;4.2.4 Translational Error Estimation for Marker Calibration;78
9.2.5;4.2.5 Error Calculation for Online Calibration;80
9.2.6;4.2.6 Data Acquisition for Evaluation;80
9.2.6.1;4.2.6.1 Data Acquisition for Evaluation of Marker Calibration;81
9.2.6.2;4.2.6.2 Data Acquisition for Evaluation of Online Calibration;81
9.2.6.2.1;World Calibration Setup:;82
9.2.6.2.2;Variance in Robot Workspace:;82
9.2.6.2.3;Robotized TMS Application---Overall System Error:;82
9.3;4.3…Evaluation of Online Calibration;84
9.3.1;4.3.1 Accuracy of Marker Calibration;84
9.3.2;4.3.2 Accuracy of Online Calibration;85
9.3.2.1;4.3.2.1 Accuracy in a World Calibration Setup;85
9.3.2.2;4.3.2.2 Variance in the Robot Workspace;85
9.3.2.3;4.3.2.3 Accuracy of Coil Positioning---Overall System Error;87
9.4;4.4…Benefits for Robotized TMS;87
9.5;References;90
10;5 FT-Control;92
10.1;5.1…Basic Principles;93
10.1.1;5.1.1 Sensor Calibration;94
10.1.2;5.1.2 Gravity Compensation and Tool Calibration;96
10.1.3;5.1.3 Influence of the Coil’s Supply Cable;97
10.2;5.2…Implementation of FT-Control;97
10.2.1;5.2.1 Setup;98
10.2.2;5.2.2 Hand-Assisted Positioning;98
10.2.3;5.2.3 Contact Pressure Control;100
10.2.3.1;5.2.3.1 Optimal Coil Placement;100
10.2.3.2;5.2.3.2 Response to Head Motion;102
10.2.4;5.2.4 Data Acquisition for Evaluation of FT-Control;102
10.2.4.1;5.2.4.1 Coil Calibration and Gravity Compensation;102
10.2.4.2;5.2.4.2 Usability of Hand-Assisted Positioning;103
10.2.4.3;5.2.4.3 Latency of Contact Pressure Control;104
10.3;5.3…Results of FT-Control;105
10.3.1;5.3.1 Coil Calibration and Gravity Compensation;105
10.3.2;5.3.2 Hand-Assisted Positioning;106
10.3.3;5.3.3 Latency of Contact Pressure Control;107
10.4;5.4…FT-Control in the Context of Robotized TMS;107
10.5;References;108
11;6 FTA-Sensor: Combination of Force/Torque and Acceleration;109
11.1;6.1…The FTA Sensor;110
11.1.1;6.1.1 Combining Acceleration with Force--Torque;110
11.1.2;6.1.2 Embedded System for Real-Time Monitoring;111
11.1.3;6.1.3 Hardware Design: Circuit Board and Casing;112
11.1.4;6.1.4 Calibration of IMU to FT Sensor;114
11.1.5;6.1.5 Data Acquisition for Evaluation of the FTA Sensor;116
11.1.5.1;6.1.5.1 Calibration;117
11.1.5.1.1;Quality of the fit:;117
11.1.5.1.2;Calibration error:;117
11.1.5.1.3;Stability of calibration:;117
11.1.5.2;6.1.5.2 Gravity Compensation;118
11.1.5.3;6.1.5.3 Latency;118
11.1.5.4;6.1.5.4 Realistic Worst-Case Estimate;119
11.2;6.2…Performance of the FTA Sensor;120
11.2.1;6.2.1 Calibration;120
11.2.1.1;6.2.1.1 Quality of the Fit;120
11.2.1.2;6.2.1.2 Calibration Error;120
11.2.1.3;6.2.1.3 Stability of the Calibration;122
11.2.2;6.2.2 Gravity Compensation;122
11.2.3;6.2.3 Latency;124
11.2.4;6.2.4 Realistic Worst-Case Estimate;124
11.3;6.3…FTA Sensor for Safe Robotized TMS;125
11.4;References;126
12;7 Optimized FT-Control with FTA Sensor;127
12.1;7.1…Advanced Hand-Assisted Positioning;127
12.2;7.2…Integration into the Robot Server;130
12.3;7.3…TMS Coil Calibration;132
12.4;7.4…Data Acquisition for Realistic Evaluation of Optimized FT-Control;132
12.4.1;7.4.1 Coil Calibration and Gravity Compensation;133
12.4.2;7.4.2 Precision of Optimized Hand-Assisted Positioning;133
12.5;7.5…Performance of the FTA Sensor in Operation;135
12.5.1;7.5.1 Coil Calibration and Gravity Compensation;135
12.5.2;7.5.2 Precision of Optimized Hand-Assisted Positioning;136
12.6;7.6…Optimized FT-Control for Clinical Acceptance;137
12.7;References;138
13;8 Direct Head Tracking;139
13.1;8.1…Direct Versus Indirect Tracking;139
13.2;8.2…FaceAPI;140
13.2.1;8.2.1 The FaceAPI’s Main Principle;140
13.2.2;8.2.2 Evaluation of the FaceAPI for Direct Head Tracking;141
13.2.3;8.2.3 Accuracy of the FaceAPI;141
13.3;8.3…3D Laser Scans;141
13.3.1;8.3.1 Implementation of Direct Head Tracking with Laser Scans;142
13.3.1.1;8.3.1.1 Calibration of 3D Laser Scanner to Robot;142
13.3.1.2;8.3.1.2 Coil Registration;143
13.3.1.3;8.3.1.3 Registration of Head-Scan to 3D Laser Scanner and Head Tracking;146
13.3.2;8.3.2 Data Acquisition for an Experimental Validation;147
13.3.2.1;8.3.2.1 Calibration;147
13.3.2.2;8.3.2.2 Head Registration for Head Tracking;148
13.3.2.3;8.3.2.3 Head Tracking Based on 3D Laser Scans;148
13.3.2.4;8.3.2.4 Coil Calibration;148
13.3.3;8.3.3 First Results;148
13.3.3.1;8.3.3.1 Calibration;148
13.3.3.2;8.3.3.2 Head Registration for Head Tracking;150
13.3.3.3;8.3.3.3 Head Tracking Based on 3D Laser Scans;150
13.3.3.4;8.3.3.4 Coil Registration;151
13.4;8.4…Head Contour Generation Based on Laser Scans;153
13.4.1;8.4.1 Head Scanning and Contour Generation;153
13.4.2;8.4.2 Comparison to Manual Contour Generation;154
13.4.3;8.4.3 Application in Robotized TMS Studies;154
13.5;8.5…Capability of Direct Tracking for Robotized TMS;156
13.6;References;156
14;Part IIIDiscussion and Closing Remarks;158
15;9 Discussion;159
15.1;9.1…Robust Real-Time Robot/World Calibration;160
15.2;9.2…Hand-Assisted Positioning;161
15.3;9.3…Contact Pressure Control;163
15.4;9.4…FTA Sensor;163
15.5;9.5…Direct Head Tracking;166
15.5.1;9.5.1 FaceAPI;166
15.5.2;9.5.2 3D Laser Scans;167
15.6;References;168
16;10 Closing Remarks;170
16.1;10.1…Conclusions;170
16.2;10.2…Outlook and Future Work;171
16.2.1;10.2.1 Fully Automated TMS;171
16.2.2;10.2.2 Mapping of the Spinal Roots;172
16.2.3;10.2.3 Direct Head Tracking;173
16.2.3.1;10.2.3.1 3D Depth Sensor;173
16.2.3.2;10.2.3.2 Customized Head Tracking with Webcams;174
16.2.4;10.2.4 Double-Coil Robotized TMS;175
16.2.5;10.2.5 Robotized Interleaved TMS/fMRI;175
16.3;References;178
17;Glossary;180
18;Companies;184
19;Curriculum Vitae;186




