Rodriguez / Denhardt | Vectors | E-Book | www.sack.de
E-Book

E-Book, Englisch, 592 Seiten, Web PDF

Rodriguez / Denhardt Vectors

A Survey of Molecular Cloning Vectors and Their Uses
1. Auflage 2014
ISBN: 978-1-4831-0308-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Survey of Molecular Cloning Vectors and Their Uses

E-Book, Englisch, 592 Seiten, Web PDF

ISBN: 978-1-4831-0308-2
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Vectors: A Survey of Molecular Cloning Vectors and Their Uses focuses on the functions of molecular cloning vectors. The book first discusses bacterial plasmid pBR322. Topics include criteria for plasmid vector design, construction and structure, transcriptional signals, DNA replication, recombination, mobilization, and plasmid stability. The text also examines bacteriophage lambda cloning vectors; filamentous phages as cloning vectors; chimeric single-stranded DNA phage-plasmid cloning vectors; and phage-plasmid hybrid vectors. The selection discusses cosmids and plasmid positive selection vectors, including library and construction, cosmid rescue, and positive selection vectors using plasmid-encoded lethal function. The text also examines vectors for regulating expression of cloned DNA, including lambda promoters, secretion vectors, and protein fusion vectors. The book takes a look at vectors with adjustable copy numbers. Copy number and protein production; adjustable copy number vectors; future expression vectors; rate-limiting steps of protein production; and promoters and ribosome binding sites are explained. The text puts emphasis on vectors for the synthesis of specific RNAs in vitro and cloning vectors for gram-positive bacteria. The selection is a valuable source of data for readers interested in molecular cloning vectors.

Rodriguez / Denhardt Vectors jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Vectors: A Survey of Molecular Cloning Vectors and Their Uses;6
3;Copyright Page;7
4;Table of Contents;11
5;CONTRIBUTORS;8
6;PREFACE;14
7;PART I: Bacterial Cloning Vectors ;16
7.1; General Cloning Vectors for Gram-Negative Bacteria;18
7.2;Chapter 1. The Plasmid, pBR322;20
7.2.1;1.1 CRITERIA FOR PLASMID VECTOR DESIGN;21
7.2.2;1.2 CONSTRUCTION AND STRUCTURE;21
7.2.3;1.3 TRANSCRIPTIONAL SIGNALS;30
7.2.4;1.4 DNA REPLICATION;32
7.2.5;1.5 RECOMBINATION;36
7.2.6;1.6 MOBILIZATION;37
7.2.7;1.7 PLASMID STABILITY;38
7.2.8;1.8 DNA TOPOLOGY;38
7.2.9;1.9 pBR322 AND ITS DISADVANTAGES;41
7.2.10;1.10 OTHER GENERALIZED CLONING PLASMIDS FOR GRAM-NEGATIVE BACTERIA;43
7.2.11;1.11 DESIGNING FUTURE MOLECULAR CLONING VECTORS;43
7.2.12;REFERENCES;52
7.3;Chapter 2. Bacteriophage Lambda Cloning Vectors;58
7.3.1;2.1 OVERVIEW OF LAMBDA BACTERIOPHAGE REPLICATION;58
7.3.2;2.2 LAMBDA VECTORS FOR CLONING 10- TO 20-kb DNA FRAGMENTS;64
7.3.3;2.3 LAMBDA VECTORS FOR CLONING 0- TO 10-KB LONG INSERTS (cDNA);70
7.3.4;REFERENCES;74
7.4;Chapter 3. Filamentous Phages as Cloning Vectors;76
7.4.1;3.1 VIRION STRUCTURE AND INFECTION CYCLE;76
7.4.2;3.2 SPECIAL CONSIDERATIONS IN DESIGN AND USE OF FILAMENTOUS PHAGE VECTORS;80
7.4.3;3.3 SURVEY OF FILAMENTOUS PHAGE VECTORS;87
7.4.4;3.4 SURVEY OF THE USES OF Ff PHAGE VECTORS;91
7.4.5;3.5 SUMMARY;96
7.4.6;REFERENCES;97
7.5;Chapter 4. Chimeric Single-Stranded DNA Phage-Plasmid Cloning Vectors ;100
7.5.1;4.1 FILAMENTOUS PHAGE BIOLOGY AND DEVELOPMENT OF PHAGEMID CLONING VECTORS;101
7.5.2;4.2 APPLICATIONS, ADVANTAGES, AND DISADVANTAGES OF ssDNA PHAGEMID VECTORS;102
7.5.3;4.3 BASIC PHAGEMID CLONING VECTORS;104
7.5.4;4.4 MULTIFUNCTIONAL PHAGEMID CLONING VECTORS;110
7.5.5;4.5 INTERGENIC REGION CASSETTE PLASMID SIMPLIFICATION OF PHAGEMID CLONING VECTOR CONSTRUCTION;112
7.5.6;4.6 HELPER PHAGES FOR OBTAINING ssDNA FROM PHAGEMID VECTORS;113
7.5.7;4.7 SUMMARY;115
7.5.8;REFERENCES;115
7.6;Chapter 5. Phage-Plasmid Hybrid Vectors;118
7.6.1;5.1 f1-ColE1 HYBRIDS;119
7.6.2;5.2 pEMBL PLASMIDS;119
7.6.3;REFERENCES;126
7.7;Chapter 6. Cosmids;128
7.7.1;6.1 COSMID VECTORS;129
7.7.2;6.2 LIBRARY CONSTRUCTION;129
7.7.3;6.3 COSMID RESCUE;135
7.7.4;6.4 SUMMARY AND PROSPECTS;140
7.7.5;REFERENCES;140
7.8;Specialized Cloning Vectors for Gram-Negative Bacteria;144
7.9;Chapter 7. Plasmid Positive Selection Vectors;146
7.9.1;7.1 POSITIVE SELECTION VECTORS ENCODING A KILLING FUNCTION OF BACTERIOPHAGE ORIGIN;149
7.9.2;7.2 POSITIVE SELECTION VECTORS USING PLASMIDENCODED LETHAL FUNCTION;150
7.9.3;7.3 POSITIVE SELECTION VECTORS ENCODING THE EcoRl RESTRICTION ENDONUCLEASE;153
7.9.4;7.4 INACTIVATION OF DOMINANT FUNCTIONS CONFERRING CELL SENSITIVITY TO METABOLITES;155
7.9.5;7.5 POSITIVE SELECTION VECTORS USING DEREPRESSION OF AN ANTIBIOTIC RESISTANCE FUNCTION;158
7.9.6;7.6 POSITIVE SELECTION BY LOSS OF SENSITIVITY TO STREPTOMYCIN;161
7.9.7;7.7 LETHALITY OF PALINDROMIC DNA SEQUENCES AND THEIR USE IN POSITIVE SELECTION VECTORS;161
7.9.8;7.8 SELECTION FOR LOSS OF ANTIBIOTIC RESISTANCE;162
7.9.9;7.9 CONCLUSION;164
7.9.10;REFERENCES;165
7.10;Chapter 8. Vectors for Cloning Promoters and Terminators;168
7.10.1;8.1 PROMOTER-CLONING DERIVATIVES OF pACYC177 AND pACYC184 EMPLOYING ACTIVATION OF ANTIBIOTIC RESISTANCE;170
7.10.2;8.2 PROMOTER- AND TERMINATOR-CLONING PLASMID VECTORS EMPLOYING THE ESCHERICHIA COLI ß-GALACTOSIDASE STRUCTURAL GENE;172
7.10.3;8.3 PROMOTER-CLONING DERIVATIVES OF pBR316 and pBR322 EMPLOYING ACTIVATION OF ANTIBIOTIC RESISTANCE;176
7.10.4;8.4 PROMOTER- AND TERMINATOR-CLONING VECTORS EMPLOYING THE E. COLI/ GALACTOKINASE STRUCTURAL GENE;181
7.10.5;8.5 PROMOTER- AND TERMINATOR-CLONING PLASMIDS EMPLOYING OTHER STRUCTURAL GENES;184
7.10.6;8.6 PLASMIDS FOR ANALYZING DIVERGENTLY ARRANGED PROMOTERS;188
7.10.7;8.7 BROAD GRAM-NEGATIVE HOST RANGE PROMOTERAND TERMINATOR-CLONING PLASMID VECTORS;188
7.10.8;8.8 CONCLUSION;190
7.10.9;REFERENCES;190
7.11;Chapter 9. A Survey of Vectors for Regulating Expression of Cloned;194
7.11.1;9.1 THE trp PROMOTER;195
7.11.2;9.2 THE lac PROMOTER;197
7.11.3;9.3 THE tac PROMOTER;202
7.11.4;9.4 THE LAMBDA PROMOTERS;202
7.11.5;9.5 OTHER REGULATABLE PROMOTERS;207
7.11.6;9.6 SECRETION VECTORS;210
7.11.7;9.7 PROTEIN FUSION VECTORS;212
7.11.8;REFERENCES;214
7.12;Chapter 10. Expression Vectors Employing Lambda-, trp-, lac-, and lpp-Derived Promoters;220
7.12.1;10.1 GENERAL CONSIDERATIONS;220
7.12.2;10.2 EXPRESSION VECTOR PROMOTERS;227
7.12.3;10.3 CONCLUSION;236
7.12.4;REFERENCES;237
7.13;Chapter 11. Vectors with Adjustable Copy Numbers;242
7.13.1;11.1 RATE-LIMITING STEPS OF PROTEIN PRODUCTION;242
7.13.2;11.2 PROMOTERS AND RIBOSOME BINDING SITES;243
7.13.3;11.3 COPY NUMBER AND PROTEIN PRODUCTION;243
7.13.4;11.4 ADJUSTABLE COPY NUMBER VECTORS;245
7.13.5;11.5 FUTURE EXPRESSION VECTORS;249
7.13.6;REFERENCES;250
7.14;Chapter 12. Specialized Plasmid Vectors for Cloning cDNA;252
7.14.1;12.1 OLIGONUCLEOTIDE PRIMING OF cDNA SYNTHESIS;252
7.14.2;12.2 VECTOR PRIMING OF cDNA SYNTHESIS;254
7.14.3;REFERENCES;265
7.15;Chapter 13. Vectors for the Synthesis of Specific RNAs in Vitro;268
7.15.1;13.1 BACTERIOPHAGE-ENCODED RNA POLYMERASES;269
7.15.2;13.2 VECTORS CONTAINING T7 OR SP6 PROMOTERS;270
7.15.3;13.3 ALTERNATIVES TO PHAGE-SPECIFIED RNA POLYMERASES;273
7.15.4;13.4 SYNTHESIS OF SINGLE-STRANDED RNA PROBES;274
7.15.5;13.5 SYNTHESIS OF RNA SUBSTRATES;276
7.15.6;13.6 SYNTHESIS OF mRNA TEMPLATES IN VITRO;277
7.15.7;13.7 DNA SEQUENCING WITH PROMOTER VECTORS;278
7.15.8;13.8 CONSTRUCTION AND SCREENING OF cDNA LIBRARIES;279
7.15.9;13.9 SYNTHESIS OF ANTI-mRNA;279
7.15.10;REFERENCES;280
7.16;Chapter 14. Improved Suppressor tRNA Cloning Vectors and Plasmid- Phage Recombination;284
7.16.1;14.1 IMPROVED SUPPRESSOR PLASMIDS AND HOSTS;285
7.16.2;14.2 DEVELOPMENTS IN THE LIBRARY RECOMBINATION SYSTEM;292
7.16.3;REFERENCES;297
7.17;Cloning Vectors with Broad-Host-Range Capability;300
7.18;Chapter 15. Broad-Host-Range Plasmid Cloning Vectors for Gram-Negative Bacteria;302
7.18.1;15.1 BASIC PROPERTIES OF BROAD-HOST-RANGE PLASMID ELEMENTS;303
7.18.2;15.2 VECTOR DEVELOPMENT;309
7.18.3;15.3 COSMID VECTORS;325
7.18.4;15.4 GENE FUSION VECTORS;334
7.18.5;15.5 GENE CLONING WITH BROAD-HOST-RANGE VECTORS;337
7.18.6;15.6 SUMMARY AND OUTLOOK;340
7.18.7;REFERENCES;341
7.19;Chapter 16. Specialized Vectors for Members of Rhizobiaceae and Other Gram-Negative Bacteria;348
7.19.1;16.1 STABLE RHIZOBIACEAE-SPECIFIC COSMID VECTORS;350
7.19.2;16.2 STABLE HIGH-COPY-NUMBER VECTORS FOR USE IN RHIZOBIACEAE;352
7.19.3;16.3 POSITIVE SELECTION OF CLONED FRAGMENTS USING THE LEVANSUCRASE GENE;354
7.19.4;REFERENCES;356
7.20;Cloning Vectors for Gram-Positive Bacteria;358
7.21;Chapter 17. Generalized Cloning Vectors for Bacillus subtilis;360
7.21.1;17.1 PLASMID VECTORS;360
7.21.2;17.2 BACTERIOPHAGE VECTORS;366
7.21.3;17.3 OTHER APPROACHES TO CLONING B. SUBTILIS GENES;372
7.21.4;REFERENCES;374
7.22;Chapter 18. Promoter Probe Plasmids for Gram-Positive Bacteria;378
7.22.1;18.1 IDEAL PROMOTER CLONING PLASMID FOR B. SUBTILIS;380
7.22.2;18.2 PROMOTER CLONING PLASMIDS;382
7.22.3;18.3 GENE FUSIONS MEDIATED BY TN917;394
7.22.4;REFERENCES;397
8;PART II: FUNGAL CLONING VECTORS;400
8.1;Chapter 19. Molecular Cloning Vectors of Saccharomyces: Generalized Cloning Vectors;402
8.1.1;19.1 VECTOR REQUIREMENTS;403
8.1.2;19.2 NOMENCLATURE AND ORIGIN;407
8.1.3;19.3 VECTOR CHOICE;413
8.1.4;19.4 CLONING VECTORS FOR YEAST OTHER THAN S. CEREVISIAE;417
8.1.5;REFERENCES;418
8.2;Chapter 20. Plasmid Vectors for the Analysis of Regulatory Sequences in Yeast;420
8.2.1;20.1 VECTOR COMPONENTS;421
8.2.2;20.2 MARKER GENES;424
8.2.3;20.3 VECTORS;426
8.2.4;20.4 CONCLUSIONS;429
8.2.5;REFERENCES;430
8.3;Chapter 21. Molecular Cloning Vectors for Aspergillus and Neurospora;434
8.3.1;21.1 TRANSFORMATION SYSTEMS AND SELECTABLE MARKERS;435
8.3.2;21.2 TRANSFORMATION MECHANISMS;438
8.3.3;21.3 AUTONOMOUSLY REPLICATING VECTORS;439
8.3.4;21.4 CLONING STRATEGIES;440
8.3.5;21.5 EXPRESSION VECTORS FOR ASPERGILLUS;442
8.3.6;21.6 CONCLUSIONS;446
8.3.7;REFERENCES;446
9;PART III: INSECT AND ANIMAL CELL CLONING VECTORS;450
9.1;Chapter 22. Vectors for P-Mediated Transformation in Drosophila;452
9.1.1;22.1 PROPERTIES OF P VECTORS;453
9.1.2;22.2 CARNEGIE VECTORS;454
9.1.3;22.3 CARNEGIE 20;454
9.1.4;22.4 CaSpeR VECTOR;456
9.1.5;22.5 Adh VECTOR pPA-1;457
9.1.6;22.6 pUChsneo;457
9.1.7;22.7 CosPneo;460
9.1.8;22.8 COMPARISON OF VECTORS;461
9.1.9;22.9 PROMOTER-PROBE VECTORS;463
9.1.10;22.10 HELPER PLASMIDS;463
9.1.11;22.11 INJECTION PROCEDURE;464
9.1.12;22.11 EFFICIENCY OF TRANSFORMATION;465
9.1.13;22.12 INSERTION SPECIFICITY AND EXPRESSION;466
9.1.14;22.13 OTHER APPLICATIONS OF P VECTORS;467
9.1.15;22.14 P-MEDIATED TRANSFORMATION OF OTHER SPECIES;469
9.1.16;22.15 POSSIBILITIES FOR IMPROVED VECTORS;469
9.1.17;REFERENCES;470
9.2;Chapter 23. Baculoviruses for Foreign Gene Expression in Insect Cells;472
9.2.1;23.1 SIZE AND NATURE OF FOREIGN GENE INSERTS;473
9.2.2;23.2 AVAILABLE BACULOVIRUS EXPRESSION VECTORS;474
9.2.3;23.3 POSTTRANSLATIONAL MODIFICATION IN INSECT CELLS;477
9.2.4;23.4 SIMULTANEOUS EXPRESSION OF TWO OR MORE GENES;478
9.2.5;23.5 SAFETY CONSIDERATIONS;479
9.2.6;23.6 SUMMARY;479
9.2.7;REFERENCES;480
9.3;Chapter 24. Mammalian Expression Vectors;482
9.3.1;24.1 SOME REQUIREMENTS OF MAMMALIAN EXPRESSION VECTORS;483
9.3.2;24.2 INTRODUCTION OF VECTOR INTO HOST CELLS;485
9.3.3;24.3 PAPOVA VIRUS VECTORS;487
9.3.4;24.4 NONRESTRICTIVE VECTORS;488
9.3.5;24.5 REGULATABLE VECTORS;489
9.3.6;24.6 VECTORS FOR THE ANALYSIS OF SEQUENCE ELEMENTS THAT CONTROL EXPRESSION;490
9.3.7;24.7 VECTORS THAT PERMIT CLONING AND EXPRESSION OF cDNA INSERTS;490
9.3.8;24.8 VECTORS THAT REPLICATE EPISOMALLY;492
9.3.9;24.9 ADENOVIRUS VECTORS;494
9.3.10;24.10 PARVOVIRUS VECTORS;497
9.3.11;24.11 VACCINIA VIRUS VECTORS;498
9.3.12;24.12 WHAT THE FUTURE MAY HOLD;501
9.3.13;REFERENCES;502
9.4;Chapter 25. Retroviral Vectors;508
9.4.1;25.1 LIFE CYCLE;509
9.4.2;25.2 CONSTRUCTION OF RECOMBINANT RETROVIRUS;514
9.4.3;25.3 DIFFERENT TYPES OF RECOMBINANT RETROVIRUSES;521
9.4.4;25.4 USES OF RETROVIRAL VECTORS;523
9.4.5;25.5 CONCLUSIONS;525
9.4.6;REFERENCES;526
10;PART IV: PLANT CLONING VECTORS;530
10.1;Chapter 26. Agrobacterium tumefaciens Ti Plasmid-Derived Plant Vectors for Dicotyledonous and Monocotyledonous Plants;532
10.1.1;26.1 HOST RANGE FOR T-DNA TRANSFER BY AGROBACTERIUM;535
10.1.2;26.2 STRUCTURE OF T-DNA;538
10.1.3;26.3 ROLE OF BORDER REPEATS;538
10.1.4;26.4 DISARMING T-DNA;540
10.1.5;26.5 SELECTION OF TRANSFORMANTS;541
10.1.6;26.6 USE OF THE Ti PLASMID AS A PLANT VECTOR;542
10.1.7;26.8 CONCLUSION;548
10.1.8;REFERENCES;549
10.2;Chapter 27. Current Vectors for Plant Transformation;554
10.2.1;27.1 MOLECULAR BIOLOGY OF THE AGROBACTERIUM TUMEFACIENS TI PLASMID;555
10.2.2;27.2 GETTING GENES INTO THE TI PLASMID;556
10.2.3;27.3 pMON200;557
10.2.4;27.4 "DISARMING" THE T-DNA;558
10.2.5;27.5 USE OF pMON200;559
10.2.6;27.6 BINARY VECTORS;562
10.2.7;27.7 "DISARMED" TI PLASMIDS FOR BINARY VECTORS;564
10.2.8;27.8 GETTING GENES INTO PLANTS;565
10.2.9;27.9 BORDER SEQUENCES AND BINARY VECTOR T-DNA STRUCTURE;565
10.2.10;27.10 FUTURE USES FOR BINARY VECTORS;567
10.2.11;27.11 IMPROVEMENTS AND FUTURE NEEDS;567
10.2.12;REFERENCES;570
11;Index;574



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.