Buch, Englisch, 670 Seiten, Book, Format (B × H): 159 mm x 241 mm, Gewicht: 1077 g
Reihe: Universitext
Buch, Englisch, 670 Seiten, Book, Format (B × H): 159 mm x 241 mm, Gewicht: 1077 g
Reihe: Universitext
ISBN: 978-3-540-22887-5
Verlag: Springer-Verlag GmbH
This textbook deals with tensors that are treated as vectors. Coverage details such new tensor concepts as the rotation of tensors, the transposer tensor, the eigentensors, and the permutation tensor structure. The book covers an existing gap between the classic theory of tensors and the possibility of solving tensor problems with a computer. A complementary computer package, written in Mathematica, is available through the Internet.
Zielgruppe
Lower undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Professionelle Anwendung Computer-Aided Design (CAD)
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Naturwissenschaften Physik Physik Allgemein Experimentalphysik
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Naturwissenschaften Physik Physik Allgemein Geschichte der Physik
- Technische Wissenschaften Technik Allgemein Mathematik für Ingenieure
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Informatik
Weitere Infos & Material
Basic Tensor Algebra.- Tensor Spaces.- to Tensors.- Homogeneous Tensors.- Change-of-basis in Tensor Spaces.- Homogeneous Tensor Algebra: Tensor Homomorphisms.- Special Tensors.- Symmetric Homogeneous Tensors: Tensor Algebras.- Anti-symmetric Homogeneous Tensors, Tensor and Inner Product Algebras.- Pseudotensors; Modular, Relative or Weighted Tensors.- Exterior Algebras.- Exterior Algebras: Totally Anti-symmetric Homogeneous Tensor Algebras.- Mixed Exterior Algebras.- Tensors over Linear Spaces with Inner Product.- Euclidean Homogeneous Tensors.- Modular Tensors over En (IR) Euclidean Spaces.- Euclidean Exterior Algebra.- Classic Tensors in Geometry and Mechanics.- Affine Tensors.




