Sahoo / Kannappan | Introduction to Functional Equations | E-Book | sack.de
E-Book

E-Book, Englisch, 465 Seiten

Sahoo / Kannappan Introduction to Functional Equations


1. Auflage 2011
ISBN: 978-1-4398-4116-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 465 Seiten

ISBN: 978-1-4398-4116-7
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values.

In order to make the presentation as manageable as possible for students from a variety of disciplines, the book chooses not to focus on functional equations where the unknown functions take on values on algebraic structures such as groups, rings, or fields. However, each chapter includes sections highlighting various developments of the main equations treated in that chapter. For advanced students, the book introduces functional equations in abstract domains like semigroups, groups, and Banach spaces.

Functional equations covered include:

- Cauchy Functional Equations and Applications

- The Jensen Functional Equation

- Pexider's Functional Equation

- Quadratic Functional Equation

- D'Alembert Functional Equation

- Trigonometric Functional Equations

- Pompeiu Functional Equation

- Hosszu Functional Equation

- Davison Functional Equation

- Abel Functional Equation

- Mean Value Type Functional Equations

- Functional Equations for Distance Measures

The innovation of solving functional equations lies in finding the right tricks for a particular equation. Accessible and rooted in current theory, methods, and research, this book sharpens mathematical competency and prepares students of mathematics and engineering for further work in advanced functional equations.

Sahoo / Kannappan Introduction to Functional Equations jetzt bestellen!

Zielgruppe


Students, researchers, applied mathematicians, and engineers using functional equations.

Weitere Infos & Material


Additive Cauchy Functional Equation
Introduction
Functional Equations
Solution of Additive Cauchy Functional Equation
Discontinuous Solution of Additive Cauchy Equation
Other Criteria for Linearity
Additive Functions on the Complex Plane
Concluding Remarks
Exercises

Remaining Cauchy Functional Equations
Introduction
Solution of Exponential Cauchy Equation
Solution of Logarithmic Cauchy Equation
Solution of Multiplicative Cauchy Equation
Concluding Remarks
Exercises

Cauchy Equations in Several Variables
Introduction
Additive Cauchy Equations in Several Variables
Multiplicative Cauchy Equations in Several Variables
Other Two Cauchy Equations in Several Variables
Concluding Remarks
Exercises

Extension of the Cauchy Functional Equations
Introduction
Extension of Additive Functions
Concluding Remarks
Exercises

Applications of Cauchy Functional Equations
Introduction
Area of Rectangles
Definition of Logarithm
Simple and Compound Interests
Radioactive Disintegration
Characterization of Geometric Distribution
Characterization of Discrete Normal Distribution
Characterization of Normal Distribution
Concluding Remarks

More Applications of Functional Equations
Introduction
Sum of Powers of Integers
Sum of Powers of Numbers on Arithmetic Progression
Number of Possible Pairs Among n Things
Cardinality of a Power Set
Sum of Some Finite Series
Concluding Remarks

The Jensen Functional Equation
Introduction
Convex Function
The Jensen Functional Equation
A Related Functional Equation
Concluding Remarks
Exercises

Pexider's Functional Equations
Introduction
Pexider's Equations
Pexiderization of the Jensen Functional Equation
A Related Equation
Concluding Remarks
Exercises

Quadratic Functional Equation
Introduction
Biadditive Functions
Continuous Solution of Quadratic Functional Equation
A Representation of Quadratic Functions
Contents xvii
Pexiderization of Quadratic Equation
Concluding Remarks
Exercises

D'Alembert Functional Equation
Introduction
Continuous Solution of d'Alembert Equation
General Solution of d'Alembert Equation
A Characterization of Cosine Functions
Concluding Remarks
Exercises

Trigonometric Functional Equations
Introduction
Solution of a Cosine-Sine Functional Equation
Solution of a Sine-Cosine Functional Equation
Solution of a Sine Functional Equation
Solution of a Sine Functional Inequality
An Elementary Functional Equation
Concluding Remarks
Exercises

Pompeiu Functional Equation
Introduction
General Solution Pompeiu Functional Equation
A Generalized Pompeiu Functional Equation
Pexiderized Pompeiu Functional Equation
Concluding Remarks
Exercises

Hosszu Functional Equation
Introduction
Hosszu Functional Equation
A Generalization of Hosszu Equation
Concluding Remarks
Exercises

Davison Functional Equation
Introduction
Continuous Solution of Davison Functional Equation
General Solution of Davison Functional Equation
Concluding Remarks
Exercises

Abel Functional Equation
Introduction
General Solution of Abel Functional Equation
Concluding Remarks
Exercises

Mean Value Type Functional Equations
Introduction
The Mean Value Theorem
A Mean Value Type Functional Equation
Generalizations of Mean Value Type Equation
Concluding Remarks
Exercises

Functional Equations for Distance Measures
Introduction
Solution of two functional equations
Some Auxiliary Results
Solution of a generalized functional equation
Concluding Remarks
Exercises

Stability of Additive Cauchy Equation
Introduction
Cauchy Sequence and Geometric Series
Hyers Theorem
Generalizations of Hyers Theorem
Concluding Remarks
Exercises

Stability of Exponential Cauchy Equations
Introduction
Stability of Exponential Equation
Ger Type Stability of Exponential Equation
Concluding Remarks
Exercises
Stability of d'Alembert and Sine Equations
Introduction
Stability of d'Alembert Equation
Stability of Sine Equation
Concluding Remarks
Exercises

Stability of Quadratic Functional Equations
Introduction
Stability of the Quadratic Equation
Stability of Generalized Quadratic Equation
Stability of a Functional Equation of Drygas
Concluding Remarks
Exercises

Stability of Davison Functional Equation
Introduction
Stability of Davison Functional Equation
Generalized Stability of Davison Equation
Concluding Remarks
Exercises

Stability of Hosszu Functional Equation
Introduction
Stability of Hossz_u Functional Equation
Stability of Pexiderized Hossz_u Functional Equation
Concluding Remarks
Exercises

Stability of Abel Functional Equation
Introduction
Stability Theorem
Concluding Remarks
Exercises
Bibliography
Index


Prasanna K. Sahoo, Department of Mathematics, University of Louisville, Kentucky, USA
Palaniappan Kannappan, Department of Pure Mathematics, University of Waterloo, Ontario, Canada



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.