Sakly / Kraiem / Guetari | Scalable Artificial Intelligence for Healthcare | Buch | 978-1-032-76959-2 | sack.de

Buch, Englisch, 164 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 300 g

Reihe: Analytics and AI for Healthcare

Sakly / Kraiem / Guetari

Scalable Artificial Intelligence for Healthcare

Advancing AI Solutions for Global Health Challenges
1. Auflage 2025
ISBN: 978-1-032-76959-2
Verlag: Taylor & Francis Ltd

Advancing AI Solutions for Global Health Challenges

Buch, Englisch, 164 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 300 g

Reihe: Analytics and AI for Healthcare

ISBN: 978-1-032-76959-2
Verlag: Taylor & Francis Ltd


This edited volume examines the transformative impact of AI technologies on global healthcare systems, with a focus on enhancing efficiency and accessibility. The content provides a comprehensive exploration of the principles and practices required to scale AI applications in healthcare, addressing areas such as diagnosis, treatment, and patient care.

Key topics include data scalability, model deployment, and infrastructure design, highlighting the use of microservices, containerization, cloud computing, and big data technologies in building scalable AI systems. Discussions cover advancements in machine learning models, distributed processing, and transfer learning, alongside critical considerations such as continuous integration, data privacy, and ethics. Real-world case studies depict both the successes and challenges of implementing scalable AI across various healthcare environments, offering valuable insights for future advancements.

This volume serves as a practical and theoretical guide for healthcare professionals, AI researchers, and technology enthusiasts seeking to develop or expand on AI-driven healthcare solutions to address global health challenges effectively.

Sakly / Kraiem / Guetari Scalable Artificial Intelligence for Healthcare jetzt bestellen!

Zielgruppe


Professional Practice & Development, Professional Reference, and Undergraduate Advanced

Weitere Infos & Material


Table of Contents

1. AI in Healthcare: Addressing Challenges and Enabling Transformation
Houneida Sakly, Ramzi Guetari, Naoufel Kraiem and Mourad Said

2. Fundamental Principles of AI Scalability in Healthcare
Abdallah Ahmed Wajdi, Houneida Sakly, Ramzi Guetari and Naoufel Kraiem

3. Architectures for Scalable AI in Healthcare
Houneida Sakly, Ramzi Guetari, Naoufel Kraiem and Mourad Abed

4. Big Data and AI Solutions for Transforming Healthcare: Frameworks, Challenges, and Future Directions
Houneida Sakly, Ramzi Guetari, Naoufel Kraiem and Mourad Abed

5. Scalable Machine Learning for Healthcare: Techniques, Applications, and Collaborative Frameworks
Alaa Eddinne ben hmida, Houneida Sakly, Ramzi Guetari and Naoufel Kraiem

6. Deployment and Continuous Integration of AI in Healthcare
Houneida Sakly, Ramzi Guetari and Naoufel Kraiem

7. AI Performance Optimization for Healthcare
Houneida Sakly, Ramzi Guetari and Naoufel Kraiem

8. Scaling AI Capabilities and Establishing a Roadmap for Sustainable Growth in Healthcare
Houneida Sakly, Ramzi Guetari and Naoufel Kraiem

9. Governance, Lessons, and Future Trends for Scalable AI in Healthcare
Houneida Sakly, Ramzi Guetari, Naoufel Kraiem and Mourad Said


Houneida Sakly is an Assistant Professor at CRMN in Tunisia’s Sousse Techno Park. Holding a Ph.D. from ENSI in partnership with French universities (Gustave Eiffel University –ESIEE-Paris and Polytech-Orléans), she specializes in data science applied to healthcare. She collaborates with Stanford and is certified by MIT-Harvard in healthcare innovation.

Ramzi Guetari is an Associate Professor of Computer Science at the Polytechnic School of Tunisia. He achieved his Ph.D. at the University of Savoie, France, worked at the INRIA, contributed to W3C standards, and now studies AI and machine learning, collaborating with international organizations and companies.

Naoufel Kraiem is a Full Professor of Computer Science with 32 years in academia. He earned his Ph.D. at the University of Paris 6 and Habilitation from Sorbonne University. His research spans IT, data science, and software engineering, supported by the CNRS, INRIA, and EU programs, with over 147 publications.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.