Saltenberger | On different concepts for the linearization of matrix polynomials and canonical decompositions of structured matrices with respect to indefinite sesquilinear forms | Buch | 978-3-8325-4914-5 | www.sack.de

Buch, Englisch, 191 Seiten, PB, Format (B × H): 145 mm x 210 mm

Saltenberger

On different concepts for the linearization of matrix polynomials and canonical decompositions of structured matrices with respect to indefinite sesquilinear forms


Erscheinungsjahr 2019
ISBN: 978-3-8325-4914-5
Verlag: Logos

Buch, Englisch, 191 Seiten, PB, Format (B × H): 145 mm x 210 mm

ISBN: 978-3-8325-4914-5
Verlag: Logos


In this thesis, a novel framework for the construction and analysis of strong linearizations for matrix polynomials is presented. Strong linearizations provide the standard means to transform polynomial eigenvalue problems into equivalent generalized eigenvalue problems while preserving the complete finite and infinite eigenstructure of the problem. After the transformation, the QZ algorithm or special methods appropriate for structured linearizations can be applied for finding the eigenvalues efficiently.

The block Kronecker ansatz spaces proposed here establish an innovative and flexible approach for the construction of strong linearizations in the class of strong block minimal bases pencils. Moreover, they represent a new vector-space-setting for linearizations of matrix polynomials that additionally provides a common basis for various existing techniques on this task (such as Fiedler-linearizations). New insights on their relations, similarities and differences are revealed. The generalized eigenvalue problems obtained often allow for an efficient numerical solution. This is discussed with special attention to structured polynomial eigenvalue problems whose linearizations are structured as well.

Structured generalized eigenvalue problems may also lead to equivalent structured (standard) eigenvalue problems. Thereby, the transformation produces matrices that can often be regarded as selfadjoint or skewadjoint with respect to some indefinite inner product. Based on this observation, normal matrices in indefinite inner product spaces and their spectral properties are studied and analyzed. Multiplicative and additive canonical decompositions respecting the matrix structure induced by the inner product are established.

Saltenberger On different concepts for the linearization of matrix polynomials and canonical decompositions of structured matrices with respect to indefinite sesquilinear forms jetzt bestellen!

Autoren/Hrsg.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.