Saltzman | Dynamical Paleoclimatology | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band Volume 80, 354 Seiten

Reihe: International Geophysics

Saltzman Dynamical Paleoclimatology

Generalized Theory of Global Climate Change
1. Auflage 2001
ISBN: 978-0-08-050483-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

Generalized Theory of Global Climate Change

E-Book, Englisch, Band Volume 80, 354 Seiten

Reihe: International Geophysics

ISBN: 978-0-08-050483-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



The book discusses the ideas and creates a framework for building toward a theory of paleoclimate. Using the rich and mounting array of observational evidence of climatic changes from geology, geochemistry, and paleontology, Saltzman offers a dynamical approach to the theory of paleoclimate evolution and an expanded theory of climate. Saltzman was a distinquished authority on dynamical meteorology. This book provides a comprehensive framework based on dynamical system ideas for a theory of climate and paleoclimatic evolution which is intended for graduate students and research workers in paleoclimatology, earth system studies, and global change research. The book includes an extensive bibliography of geological and physical/dynamical references. - Written by the late Barry Saltzman who was a distinquished authority on dynamical meteorology - This book provides a comprehensive framework based on dynamical system ideas for a theory of climate and paleoclimatic evolution - The book includes extensive bibliography of geological and physical/dynamical references

Barry Saltzman, 1932-2001, was professor of geology and geophysics at Yale University and a pioneer in the theory of weather and climate, in which he made several profound and lasting contributions to knowledge of the atmosphere and climate. Saltzman developed a series of models and theories of how ice sheets, atmospheric winds, ocean currents, carbon dioxide concentration, and other factors work together, causing the climate to oscillate in a 100,000-year cycle. For this and other scientific contributions, he received the 1998 Carl Gustaf Rossby Research Medal, the highest award from the American Meteorological Society. Saltzman was a fellow of the American Meteorological Society and the American Association for the Advancement of Science and an honorary member of the Academy of Science of Lisbon. His work in 1962 on thermal convection led to the discovery of chaos theory and the famous 'Saltzman-Lorenz attractor.'

Saltzman Dynamical Paleoclimatology jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover;1
2;Contents;8
3;Prologue;16
4;Acknowledgments;20
5;List of Symbols;22
6;Part I: Foundations;32
6.1;CHAPTER 1. INTRODUCTION: The Basic Challenge;34
6.1.1;1.1 The Climate System;34
6.1.2;1.2 Some Basic Observations;35
6.1.3;1.3 External Forcing;40
6.1.4;1.4 The Ice-Age Problem;45
6.2;CHAPTER 2. TECHNIQUES FOR CLIMATE RECONSTRUCTION;48
6.2.1;2.1 Historical Methods;48
6.2.2;2.2 Surficial Biogeologic Proxy Evidence;49
6.2.3;2.3 Conventional Nonisotopic Stratigraphic Analyses of Sedimentary Rock and Ice;51
6.2.4;2.4 Isotopic Methods;54
6.2.5;2.5 Nonisotopic Geochemical Methods;57
6.2.6;2.6 Dating the Proxy Evidence (Geochronometry);58
6.3;CHAPTER 3. A SURVEY OF GLOBAL PALEOCLIMATIC VARIATIONS;61
6.3.1;3.1 The Phanerozoic Eon (Past 600 My);62
6.3.2;3.2 The Cenozoic Era (Past 65 My);65
6.3.3;3.3 The Plio-Pleistocene (Past 5 My);66
6.3.4;3.4 Variations during the Last Ice Age: IRD Events;68
6.3.5;3.5 The Last Glacial Maximum (20 ka);69
6.3.6;3.6 Postglacial Changes: The Past 20 ky;70
6.3.7;3.7 The Past 100 Years;71
6.3.8;3.8 The Generalized Spectrum of Climatic Variance;72
6.3.9;3.9 A Qualitative Discussion of Causes;75
6.4;CHAPTER 4. GENERAL THEORETICAL CONSIDERATIONS;78
6.4.1;4.1 The Fundamental Equations;78
6.4.2;4.2 Time Averaging and Stochastic Forcing;82
6.4.3;4.3 Response Times and Equilibrium;86
6.4.4;4.4 Spatial Averaging;91
6.4.5;4.5 Climatic-Mean Mass and Energy Balance Equations;94
6.5;CHAPTER 5. SPECIAL THEORETICAL CONSIDERATIONS FOR PALEOCLIMATE: Structuring a Dynamical Approach;99
6.5.1;5.1 A Basic Problem: Noncalculable Levels of Energy and Mass Flow;100
6.5.2;5.2 An Overall Strategy;103
6.5.3;5.3 Notational Simplifications for Resolving Total Climate Variability;105
6.5.4;5.4 A Structured Dynamical Approach;107
6.5.5;5.5 The External Forcing Function, F;113
6.6;CHAPTER 6. BASIC CONCEPTS OF DYNAMICAL SYSTEMS ANALYSIS : Prototypical Climatic Applications;115
6.6.1;6.1 Local (or Internal) Stability;115
6.6.2;6.2 The Generic Cubic Nonlinearity;117
6.6.3;6.3 Structural (or External) Stability: Elements of Bifurcation Theory;118
6.6.4;6.4 Multivariable Systems;123
6.6.5;6.5 A Prototype Two-Variable Model;126
6.6.6;6.6 The Prototype Two-Variable System as a Stochastic-Dynamical System: Effects of Random Forcing ;134
6.6.7;6.7 More Than Two-Variable Systems: Deterministic Chaos;139
7;Part II: Physics of the Separate Domains;142
7.1;CHAPTER 7. MODELING THE ATMOSPHERE AND SURFACE STATE AS FAST-RESPONSE COMPONENTS;144
7.1.1;7.1 The General Circulation Model;145
7.1.2;7.2 Lower Resolution Models: Statistical-Dynamical Models and the Energy Balance Model;146
7.1.3;7.3 Thermodynamic Models;150
7.1.4;7.4 The Basic Energy Balance Model;152
7.1.5;7.5 Equilibria and Dynamical Properties of the Zero-Dimensional (Global Average) EBM;154
7.1.6;7.6 Stochastic Resonance;158
7.1.7;7.7 The One-Dimensional (Latitude-Dependent) EBM;160
7.1.8;7.8 Transitivity Properties of the Atmospheric and Surface Climatic State: Inferences from a GCM;163
7.1.9;7.9 Closure Relationships Based on GCM Sensitivity Experiments;165
7.1.10;7.10 Formal Feedback Analysis of the Fast-Response Equilibrium State;170
7.1.11;7.11 Paleoclimatic Simulations;174
7.2;CHAPTER 8. THE SLOW-RESPONSE 'CONTROL" VARIABLES: An Overview;177
7.2.1;8.1 The Ice Sheets;178
7.2.2;8.2 Greenhouse Gases: Carbon Dioxide;180
7.2.3;8.3 The Thermohaline Ocean State;182
7.2.4;8.4 A Three-Dimensional Phase-Space Trajectory;185
7.3;CHAPTER 9. GLOBAL DYNAMICS OF THE ICE SHEETS;189
7.3.1;9.1 Basic Equations and Boundary Conditions;189
7.3.2;9.2 A Scale Analysis;194
7.3.3;9.3 The Vertically Integrated Ice-Sheet Model;197
7.3.4;9.4 The Surface Mass Balance;199
7.3.5;9.5 Basal Temperature and Melting;200
7.3.6;9.6 Deformable Basal Regolith;202
7.3.7;9.7 Ice Streams and Ice Shelves;203
7.3.8;9.8 Bedrock Depression;203
7.3.9;9.9 Sea Level Change and the Ice Sheets: The Depression-Calving Hypothesis;204
7.3.10;9.10 Paleoclimatic Applications of the Vertically Integrated Model;207
7.3.11;9.11 A Global Dynamical Equation for Ice Mass;208
7.4;CHAPTER 10. DYNAMICS OF ATMOSPHERIC CO2;212
7.4.1;10.1 The Air-Sea Flux, Q?;214
7.4.2;10.2 Terrestrial Organic Carbon Exchange, WG?;223
7.4.3;10.3 Outgassing Processes, V?;227
7.4.4;10.4 Rock Weathering Downdraw, W?;228
7.4.5;10.5 A Global Dynamical Equation for Atmospheric CO2;231
7.4.6;10.6 Modeling the Tectonically Forced CO2 Variations, µ: Long-Term Rock Processes;231
7.4.7;10.7 Overview of the Full Global Carbon Cycle;236
7.5;CHAPTER 11. SIMPLIFIED DYNAMICS OF THE THERMOHALINE OCEAN STATE;237
7.5.1;11.1 General Equations;239
7.5.2;11.2 A Prototype Four-Box Ocean Model;241
7.5.3;11.3 The Wind-Driven, Local-Convective, and Baroclinic Eddy Circulations;242
7.5.4;11.4 The Two-Box Thermohaline Circulation Model: Possible Bimodality of the Ocean State;247
7.5.5;11.5 Integral Equations for the Deep Ocean State;257
7.5.6;11.6 Global Dynamical Equations for the Thermohaline State: . and Sf;260
8;Part III: Unified Dynamical Theory;264
8.1;CHAPTER 12. THE COUPLED FAST- AND SLOW-RESPONSE VARIABLES AS A GLOBAL DYNAMICAL SYSTEM: Outline of a Theory of Paleoclimatic Variation;266
8.1.1;12.1 The Unified Model: A Paleoclimate Dynamics Model;267
8.1.2;12.2 Feedback-Loop Representation;269
8.1.3;12.3 Elimination of the Fast-Response Variables: The Center Manifold;272
8.1.4;12.4 Sources of Instability: The Dissipative Rate Constants;273
8.1.5;12.5 Formal Separation into Tectonic Equilibrium and Departure Equations;275
8.2;CHAPTER 13. FORCED EVOLUTION OF THE TECTONIC-MEAN CLIMATIC STATE;278
8.2.1;13.1 Effects of Changing Solar Luminosity and Rotation Rate;279
8.2.2;13.2 General Effects of Changing Land–Ocean Distribution and Topography ( h);280
8.2.3;13.3 Effects of Long–Term Variations of Volcanic and Cosmic Dust and Bolides;284
8.2.4;13.4 Multimillion–Year Evolution of CO2;286
8.2.5;13.5 Possible Role of Salinity-Driven Instability of the Tectonic- Mean State;291
8.2.6;13.6 Snapshot Atmospheric and Surficial Equilibrium Responses to Prescribed y-Fields Using GCMs;292
8.3;CHAPTER 14. THE LATE CENOZOIC ICE-AGE DEPARTURES: An Overview of Previous Ideas and Models;293
8.3.1;14.1 General Review: Forced vs. Free Models;293
8.3.2;14.2 Forced Ice-Line Models (Box 1, Fig. 14-1);297
8.3.3;14.3 Ice-Sheet Inertia Models;298
8.3.4;14.4 The Need for Enhancement of the Coupled Ice-SheetlAtmospheric Climate Models;302
8.3.5;14.5 Ice-Sheet Variables Coupled with Additional Slow-Response Variables;303
8.3.6;14.6 Carbon Dioxide, µ (Box 10);305
8.3.7;14.7 Summary;307
8.4;CHAPTER 15. A GLOBAL THEORY OF THE LATE CENOZOIC ICE AGES : Glacial Onset and Oscillation;309
8.4.1;15.1 Specialization of the Model;310
8.4.2;15.2 The 100-ky Oscillation as a Free Response: Determination of the Adjustable Parameters;313
8.4.3;15.3 Milankovitch Forcing of the Free Oscillation;317
8.4.4;15.4 Structural Stability as a Function of the Tectonic CO2 Level;319
8.4.5;15.5 A More Complete Solution;321
8.4.6;15.6 Predictions;326
8.4.7;15.7 Robustness and Sensitivity;328
8.4.8;15.8 Summary: A Revival of the CO2 Theory of the Ice Ages;329
8.5;CHAPTER 16. MILLENNIAL-SCALE VARIATIONS;332
8.5.1;16.1 Theory of Heinrich Oscillations;334
8.5.2;16.2 Dynamics of the D-O Scale Oscillations;342
8.6;CHAPTER 17. CLOSING THOUGHTS: EPILOGUE;345
8.6.1;17.1 Toward a More Complete Theory;345
8.6.2;17.2 Epilogue: The Ice AgesŽ and PhysicsŽ;349
9;Bibliography;352
10;Index;374
11;List of Volumes in the Series;382
12;Color Plate Section;386



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.